## TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Medical Engineering
UNIVERSITY EXAMINATION FOR:
Bachelor of Science in Medical Engineering
EEE 4330 Digital Electronics I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: SEP 2018

## Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five Questions; Question ONE is compulsory. In addition attempt any Other TWO Questions.
Do not write on the question paper.
Question ONE.
a) Perform the following:
i. Number conversions
I. $\mathrm{ACD}_{16}$ to Octal
II. $974.125_{10}$ to Binary
ii. Arithmetic operations
i. $1100_{2} \div 101_{2}$
ii. $1011_{2}+110_{2}$
iii. Perform the following arithmetic operations
i. 17 $10-31_{10}$ using 2's Complement
ii. $13_{10}-9_{10}$ using 1 's Complement
b) For the following switching function

$$
F=\overline{\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \cdot \mathrm{C}}
$$

i. Draw its combinational logic circuit
ii. Derive its truth table
iii. Implement it using an appropriate decoder

8 marks
c.) Implement a minimized four input combinational logic circuit that produces a logic ' 1 ' at the output when at least TWO inputs are at logic ' 1 '

10 marks

## Question TWO.

a.) Explain the function of the following combinational logic devices
i. Encoder
ii. Comparator
iii. Multiplexer
iv. Decoder
v. Demultiplexer 10 marks
b.) With aid of a truth table design a minimized combinational logic circuit of a half adder

10 marks

## Question THREE

a.) i. State any TWO applications of Flip-flops
ii. With the aid of a truth table and logic diagram explain the operation of each the FOUR types of Flip-flop

12 marks
b.) Implement a minimized combinational logic circuit that effects the following Boolean function

$$
F_{(A, B, C, D)}=\Sigma_{m}(1,3,5,7,9,11,13,15)
$$

8 marks

## Question FOUR

a.) Differentiate between
i. synchronous and asynchronous binary counter
ii. negative and positive edge triggered flip-flop

8 marks
b.) With aid of timing diagrams and JK flip-flops explain the operation of a 3-bit ripple counter

12 marks

## Question FIVE

a.) With the aid of block diagram outline the four modes of shift register operation 4 marks
b.) Design a 4-bit ring counter using D flip flops and give its ONE advantage and ONE disadvantage.

6 marks
c.) i Using an 8-to-1 multiplexer implement the following switching function

$$
F_{(A, B, C)}=\Sigma_{M}(0,2,4,6)
$$

ii. Using a 4- to - 2 decoder implement a Half adder circuit.

10 marks

