

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

Department of Medical Engineering

UNIVERSITY EXAMINATION FOR:

Bachelor of Science in Medical Engineering

EEE 4330 Digital Electronics I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEP 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **five** Questions; Question ONE is compulsory. In addition attempt any Other TWO Questions.

Do not write on the question paper. Question ONE.

a) Perform the following:

i. Number conversions I. ACD3₁₆ to Octal II. 974.125₁₀ to Binary ii. Arithmetic operations i. $1100_2 \div 101_2$ ii. $1011_2 + 110_2$ iii. Perform the following arithmetic operations i. $17_{10} - 31_{10}$ using 2's Complement ii. $13_{10} - 9_{10}$ using 1's Complement

12 marks

© 2018 Technical University of Mombasa

b) For the following switching function

 $F = \overline{A.B} + \overline{A.C}$

- i. Draw its combinational logic circuit
- ii. Derive its truth table
- iii. Implement it using an appropriate decoder 8 marks
- Implement a minimized four input combinational logic circuit that produces a logic '1' at the output when at least TWO inputs are at logic '1'
 10 marks

Question TWO.

- a.) Explain the function of the following combinational logic devices
 - i. Encoder
 - ii. Comparator
 - iii. Multiplexer
 - iv. Decoder
 - v. Demultiplexer 10 marks
- b.) With aid of a truth table design a minimized combinational logic circuit of a half adder

10 marks

Question THREE

- a.) i. State any TWO applications of Flip-flops
 - ii. With the aid of a truth table and logic diagram explain the operation of each the FOUR types of Flip-flop 12 marks
- b.) Implement a minimized combinational logic circuit that effects the following Boolean function $F_{(A,B,C,D)} = \Sigma_m (1,3,5,7,9,11,13,15)$ 8 marks

Question FOUR

- a.) Differentiate between synchronous and asynchronous binary counter i. ii. negative and positive edge triggered flip-flop 8 marks b.) With aid of timing diagrams and JK flip-flops explain the operation of a 3-bit ripple counter 12 marks **Question FIVE** With the aid of block diagram outline the four modes of shift register operation 4 marks a.) Design a 4-bit ring counter using D flip flops and give its ONE advantage and ONE b.) disadvantage. 6 marks Using an 8 - to - 1 multiplexer implement the following switching function i. c.) $\mathbf{F}_{(A, B, C)} = \Sigma_{M} (0, 2, 4, 6)$
 - ii. Using a 4- to 2 decoder implement a Half adder circuit. 10 marks

© 2018 Technical University of Mombasa