TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED \& HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

EEE 4309: SIGNALS \& COMMUNICATION.

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES SEPTEMBER 2018

TIME: 2HOURS

DATE: SEPTEMBER 2018
Instructions to Candidates
You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

Question ONE

a. The system shown in Figure Q1 (a) is formed by connecting two systems in cascade. The impulse responses of the systems are given by $h_{1}(t)$ and $h_{2}(t)$ respectively, and $h_{1}(t)=e^{-2 t} u(t)$ and $h_{2}(t)=2 e^{-t} u(t)$
i. Find the impulse response $h(t)$ of the overall system.
ii. Determine if the overall system is BIBO stable.

Figure Q1 (a)
b. Consider the system in Figure Q1 (b). Determine whether the system is:
i. Memoryless
ii. Causal
iii. Linear
iv. Time-invariant
v. Stable

Figure Q1 (b)
c. A carrier wave signal $y_{1}(t)=A \sin \omega_{C} t$ is amplitude modulated by a single frequency sinusoidal signal $y_{2}(t)=B \sin \omega_{m} t$. Determine the expressions for the upper side and lower side frequency components of the modulated wave
d. Classify the following signal in terms of power and energy
$x(t)=A \cos \left(\omega t+\frac{\pi}{4}\right)$

Question TWO

a. Consider the periodic square $x(t)$ wave in Figure Q3 (a). Determine the complex Fourier series of $x(t)$. (10 marks)

Figure Q3 (a)
b. (i) Mathematically define the term linear modulation and explain all the relevant terms involved
(ii) Highlight THREE types of linear modulation involving a single message signal. (4 marks)
c. (i) Distinguish between a baseband and a pass-band PCM transmission system.
(ii) Sketch a block diagram of a baseband transmission system explaining the functional operation.

Question THREE

a. State the Dirichlet conditions that a periodic signal $x(t)$ must satisfy for it to have a Fourier transform representation.
b. i. Define convolution
ii. Prove the time convolution theorem, that is,

$$
\begin{equation*}
x_{1}(t) * x_{2}(t) \leftrightarrow X_{1}(\omega) X_{2}(\omega) \tag{9marks}
\end{equation*}
$$

c. i. Let $x(t)$ be the complex exponential signal $x(t)=e^{j \omega_{o} t}$ with radian frequency ω_{0} and fundamental period $T_{o}=2 \pi / \omega_{n}$. Consider the discrete-time sequence $x[n]$ obtained by uniform sampling of $x(t)$ with sampling interval $T_{s^{*}}$ That is, $x[n]=x\left(n T_{s}\right)=e^{j \omega_{o} n T_{s}}$
Find the condition on the value of T_{s} so that $x[n]$ is periodic.
ii. Find the even and odd components of $x(t)=e^{j t}$
(6 marks)
d. Define the following terms as used in signals and communication
i. Spectral density
ii. Random process

Question FOUR

a. Suppose that the modulating signal $m(t)$ is a sinusoid of the form

$$
\begin{equation*}
\mathrm{m}(\mathrm{t})=\mathrm{acos} 2 \pi \mathrm{f}_{\mathrm{m}} \mathrm{t} \quad \mathrm{f}_{\mathrm{m}} \ll \mathrm{f}_{\mathrm{c}} \tag{7marks}
\end{equation*}
$$

Determine the DSB-SC AM signal and its upper and lower sidebands
b. The message signal $\mathrm{m}(\mathrm{t})$ has a bandwidth of 15 kHz , a power of 14 W and a maximum amplitude of 5 . It is desirable to transmit this message to a destination via a channel with $70-\mathrm{dB}$ attenuation and additive white noise with power-spectral density $S_{n}(f)=\frac{\mathrm{N}_{0}}{2}=10^{-12} \mathrm{~W} / \mathrm{Hz}$, and achieve an SNR at the modulator output of at least 60 dB . Determine the required transmitter power and channel bandwidth if the following modulation schemes are employed.
i) $\operatorname{SSB} \mathrm{AM}$
ii) Conventional AM with modulation index equal to 0.4

Question FIVE

a. Prove the Parseval's theorem.
(4 marks)
b. Consider the RC circuit in Figure Q5. Find the relationship between the input $x(t)$ and the output $y(t)$ if:
i. $\quad x(t)=v_{s}(t)$ and $y(t)=v_{c}(t)$
ii. $\quad x(t)=v_{s}(t)$ and $y(t)=i(t)$
(8 marks)

Figure Q5
c. Consider the signal $\mathrm{x}[\mathrm{k}]$ defined as follows:
$x[k]= \begin{cases}0.2 k & 0 \leq k \leq 5 \\ 0 & \text { elsewhere }\end{cases}$
Determine and plot signals $p[k]=x[k-2]$ and $q[k]=x[k+2]$

