

# TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES DEPARTMENT OF MATHEMATICS AND PHYSICS

# **UNIVERSITY EXAMINATION FOR:**

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

## EEE 4309: SIGNALS & COMMUNICATION.

## SPECIAL/SUPPLEMENTARY EXAMINATION

## SERIES SEPTEMBER 2018

# TIME: 2 HOURS

## DATE: SEPTEMBER 2018

### **Instructions to Candidates**

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

## Question ONE

- a. The system shown in Figure Q1 (a) is formed by connecting two systems in *cascade*. The impulse responses of the systems are given by  $h_1(t)$  and  $h_2(t)$  respectively, and  $h_1(t) = e^{-2t}u(t)$  and  $h_2(t) = 2e^{-t}u(t)$ 
  - i. Find the impulse response h(t) of the overall system.
  - ii. Determine if the overall system is **BIBO** stable.

(10 marks)



- b. Consider the system in Figure Q1 (b). Determine whether the system is:
  - i. Memoryless
  - ii. Causal
  - iii. Linear
  - iv. Time-invariant
  - v. Stable

©Technical University of Mombasa

(10 marks)



- c. A carrier wave signal  $y_1(t) = Asin\omega_c t$  is amplitude modulated by a single frequency sinusoidal signal  $y_2(t) = Bsin\omega_m t$ . Determine the expressions for the upper side and lower side frequency components of the modulated wave (6mks)
- d. Classify the following signal in terms of power and energy  $x(t) = A\cos\left(\omega t + \frac{\pi}{4}\right)$ (4 marks)

### **Question TWO**

a. Consider the periodic square x(t) wave in Figure Q3 (a). Determine the complex Fourier series of x(t).

(10 marks)



### Figure Q3 (a)

- b. (i) Mathematically define the term linear modulation and explain all the relevant terms involved
  - (ii) Highlight THREE types of linear modulation involving a single message signal. (4 marks)
- c. (i) Distinguish between a baseband and a pass-band PCM transmission system.

(ii) Sketch a block diagram of a baseband transmission system explaining the functional operation.

### **Question THREE**

- a. State the Dirichlet conditions that a periodic signal x(t) must satisfy for it to have a Fourier transform representation.
- b. i. Define convolution
  - ii. Prove the time convolution theorem, that is,  $x_1(t) * x_2(t) \leftrightarrow X_1(\omega)X_2(\omega)$  (9 marks)

c. i. Let x(t) be the complex exponential signal  $x(t) = e^{j\omega_0 t}$  with radian frequency  $\omega_0$  and fundamental period  $T_o = \frac{2\pi}{\omega_o}$ . Consider the discrete-time sequence x[n] obtained by uniform sampling of x(t) with sampling interval  $T_s$ . That is,  $x[n] = x(nT_s) = e^{j\omega_0 nT_s}$ Find the condition on the value of  $T_s$  so that x[n] is periodic.

ii. Find the even and odd components of  $x(t) = e^{jt}$  (6 marks)

- d. Define the following terms as used in signals and communication
  - i. Spectral densityii. Random process (2 marks)

### **Question FOUR**

a. Suppose that the modulating signal m(t) is a sinusoid of the form

$$m(t) = a\cos 2\pi f_m t \qquad f_m \ll f_c$$

Determine the DSB-SC AM signal and its upper and lower sidebands

- b. The message signal m(t) has a bandwidth of 15 kHz, a power of 14 W and a maximum amplitude of 5. It is desirable to transmit this message to a destination via a channel with 70-dB attenuation and additive white noise with power-spectral density  $S_n(f) = \frac{N_0}{2} = 10^{-12} \text{ W/Hz}$ , and achieve an SNR at the modulator output of at least 60 dB. Determine the required transmitter power and channel bandwidth if the following modulation schemes are employed.
  - i) SSB AMii) Conventional AM with modulation index equal to 0.4 (13 marks)

(6 marks)

(3 marks)

(7 marks)

### **Question FIVE**

- a. Prove the Parseval's theorem.
- b. Consider the RC circuit in Figure Q5. Find the relationship between the input x(t) and the output y(t) if:
- c. Consider the signal x[k] defined as follows:  $x[k] = \begin{cases} 0.2k & 0 \le k \le 5\\ 0 & elsewhere \end{cases}$ Determine and plot signals p[k] = x[k-2] and q[k] = x[k+2]

(8 marks)

(4 marks)