TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MEDICAL ENGINEERING SECOND YEAR SEMESTER ONE
 EEE 4232: CIRCUIT AND NETWORK ANALYSIS SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: SEP 2017
 TIME: 2 HOURS
 DATE: SEP 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Question ONE is COMPULSORY. Attempt any other two questions.
Do not write on the question paper.

Question ONE (COMPULSORY)

a) i) State Thevenin's theorem.
ii) Fig Q1(a) represents a resistive network. Use Thevenin's theorem determine the:
I. Current I along the 4Ω resistor
II. The power dissipated on the 4Ω resistor

Fig Q1(a).
b) In the network of Fig Q1(b), use nodal analysis theorem to determine the voltage $V_{x y}$.

Fig Q1(b)
c) With an aid of waveforms show that the mean value of a symmetrical alternating quantity is given by:

$$
\begin{equation*}
V_{\text {mean }}=\frac{2 V_{\max }}{\pi} \tag{8mks}
\end{equation*}
$$

Question TWO

a) With an aid of a current, voltage and power wave forms show that the mean power in a purely resistive network is given by:

Mean power $=\frac{V_{\max } I_{\max }}{2}$
b) A coil of inductance 159.2 mH and resistance 40Ω is connected in parallel with a
30μ capacitor across a $240 \mathrm{~V}, 50 \mathrm{HZ}$ supply. Determine the:
(i) Current in the coil and its phase angle
(ii) Current in the capacitor and its phase angle
(iii) Supply current and its phase angle
(iv) Circuit impedance

Question THREE

a) (i) State Kirchoff's current and voltage laws.
(ii) Determine using Kirchoff's laws each branch current for the network shown in

Fig Q3(a)

Fig Q3(a)
b) In the network of Fig Q3(b), use Delta-star transformation to determine:
(i) The current flowing in the $(0+\mathrm{j} 10) \Omega$ impedance
(ii) The power dissipated on $(20+\mathrm{j} 0) \Omega$ impedance

Fig Q3(b)

Question FOUR

a) Design a T-section Band pass filter to pass all frequencies between 300 HZ and 1 KHZ .

The load impedance is 600Ω. Draw the filter network.
(8mks)
b) With an aid of T-section low pass filter network, show that the cut-off frequency

$$
\begin{equation*}
f_{c}=\frac{1}{\pi \sqrt{L C}} \tag{12mks}
\end{equation*}
$$

Question FIVE

a) The current in A.C circuit at any given time t seconds is given by:
$\mathrm{I}=75 \sin (200 \pi t-0.25)$ Amperes. Determine:
(i) Peak value
(ii) Mean value
(iii) Rms value
(iv) Periodic time
(v) Frequency and phase angle
(10mks)
b) A coil of negligible resistance and inductance of 100 mH is connected in series with a capacitance of $2 \mu \mathrm{~F}$ and a resistance of 10Ω across a 50 V variable frequency supply.
Determine the;
(i) Resonant frequency
(ii) Current at resonant
(iii) Voltage across the coil at resonance
(iv) Q-factor of the circuit

