TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING \& TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION 2017/2018

BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

EEE 4231: ANALOGUE ELECTRONICS I (PAPER 2) SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: september 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

QUESTION 1 (compulsory-30 marks)
(a) Describe the characteristics of a p-n junction when forward biased.
(b) Explain what you understand by the term small signal amplifier. Describe any THREE requirement of a small signal amplifier.
(c) Describe with the help of suitable diagram and waveforms, the operation of a bridge rectifier hence derive the expression for its average d.c voltage.
(d) Calculate the secondary voltage of a transformer required to produce a d.c voltage of 12 V in a bridge rectifier. (Take the diode depletion voltage $V_{d}=0.7 \mathrm{~V}$).

QUESTION 2

(a) With the help of well labeled diagram, describe the construction and principle of operation of MOSFET.
(b) Describe and sketch the following characteristics of Bipolar Junction transistors
i. Input characteristics
ii. Output characteristics
(c) For the BJT amplifier in Fig. Q2, draw h-parameter a.c equivalent circuit hence determine its a.c voltage gain given that: $\mathrm{R}_{1}=82 \mathrm{k} \Omega, \mathrm{R}_{2}=15, \mathrm{R}_{\mathrm{C}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=100$ and $\mathrm{h}_{\text {ie }}=2 \mathrm{k} \Omega$

Fig. Q2.

QUESTION 3

(a) Describe using suitable circuit and waveforms filtering process in a half-wave rectifier.
(b) Describe the advantages of bridge rectifier over full-wave centre rectifier.
(c) Determine in Fig Q3 the current through $\mathrm{R}_{1}, \mathrm{D}_{1}$ and R_{L} given that $\mathrm{V}_{\mathrm{i}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{R}_{1}=0.5 \mathrm{k} \Omega$ and the diode's zener breakdown voltage $\mathrm{V}_{\mathrm{Z}}=9 \mathrm{~V}$.

Fig. Q3

QUESTION 4

a) Differentiate between negative and positive feedback and describe FOUR major merits of negative feedback in amplifiers.
(b) With the help of suitable block diagram, show that the feedback voltage gain A_{f} for
an amplifier with negative feedback is given by: $\quad A_{f}=\frac{A}{1+A \beta}$
where A is the open loop voltage gain and β the feedback ratio.
(c) An amplifier has an open loop voltage gain of 60 db . When negative feedback is applied the gain reduces to 50 db . Determine the feedback ratio (β).

QUESTION 5

(a) Describe using suitable circuit and waveforms how the rectified voltage from a half-wave rectifier is filtered.
(b) Describe a varactor diode and state its major application.
(c) The current-voltage characteristic of a diode is given by the table below:

Forward voltage $\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	0.05	0.10	0.15	0.20	0.25	0.30
Forward current $\mathrm{I}_{\mathrm{F}}(\mathrm{mA})$	0	0.4	0.6	4.0	30	200

Plot the characteristic and use it to determine
i. The d.c resistance at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$.
ii. The a.c resistance at $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$.

