Paper B

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Engineering and Technology
Department of Electrical and Electronic Engineering

UNIVERSITY EXAMINATION FOR:

Bachelor of Science in Electrical and Electronic Engineering

EEE 2521: DIGITAL SYSTEMS DESIGN II
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five Questions; Question ONE is compulsory. In addition attempt any Other TWO Questions.
Do not write on the question paper.

Question ONE (Compulsory 30 marks)

a) Design using ASM, digital system with two flip-flops, E and F, and 4 - bit binary counter, A. The individual flip-flops in A are denoted by A_{4}, A_{3}, A_{2} and A_{1}, with A_{4} holding the most significant bit of the count. A start signal S initiates the system operation by clearing the counter A and flip-flop F. The counter is then incremented by 1 starting from the next clock pulse and continues to increment until the operations stop. Counter bits A_{3} and A_{4} determine the sequence of operations:
i) If $\mathrm{A}_{3}=0, \mathrm{E}$ is cleared to 0 and the count continuous
ii) If $\mathrm{A}_{3}=1, \mathrm{E}$ is set to 1 ; then $\mathrm{A}_{4}=1, \mathrm{~F}$ is set to 1 on the next clock pulse and the system stops counting.
b) Develop the register-transfer logic notation with three 16-bit register AR, BR and CR that perform the following operations:
(i) Transfer two 16-bit signed numbers (in 2's complement to AR and BR
(ii) If the number in AR is negative, divide the number in AR by 2 and transfer the result to register CR
(iii) If the number in AR is positive but non zero, multiply the number in $B R$ by 2 and transfer the result to CR
(iv) If the number in $A R$ is zero, clear register $C R$ to 0
[8 marks]
c) State any TWO types of micro-operations encountered in digital systems.
[2 marks]
d) Using full adder and associated combinational logic circuits of Figure Q1(b), design a 3 - bit arithmetic circuit to perform the following:
When $S=0$ the circuit performs $F_{i}=\boldsymbol{A}_{i}+\boldsymbol{B}_{i}$
When $S=1$ the circuit performs $F_{i}=A_{i}+\overline{B_{i}}+1$
[10 marks]

FIG. Q1(b)

Question TWO

a) With the aid of a block diagram describe the following control logic organisations:
i) PLA control
ii) Micro-program control
[10 marks]
b) A processor unit employs a scratchpad memory. The processor consists of 64 registers of eight bits each. Determine
i) The size of the scratchpad memory
ii) The number of lines needed for the address
iii) The number of lines the input data.
c) i) Show the block diagram of the hardware that implements the following register transfer statements.
$\mathrm{YT} 2: \mathrm{R} 3 \leftarrow \mathrm{R} 2, \mathrm{R} 2 \leftarrow \mathrm{R} 3$
ii) State what is wrong with the following register transfer statements

I $x T: A R \leftarrow A R, A R \leftarrow 0$
II y T: R1 $\leftarrow \mathrm{R} 2, R 1 \leftarrow 0$

III $z T: P C \leftarrow A R, P C \leftarrow P C+1$

Question THREE

a) Determine
i) the number of 128×8 RAM chips needed to provide a memory capacity of 2048 bytes
ii) the number of lines of the address bus that must be used to access 2048 bytes of memory and how many of these lines will be common to all chips
iii) the number of lines that must be decoded for chip select, and specify the size of the decoders
b) A typical processor unit is designed to consist of a register file with seven registers R1 through R7, two multiplexer to select bus A input and B input, a destination select decoder, an ALU and a shifter register and a status register.
i) Draw a block diagram of processor unit with appropriate interconnection and describe its operation.
ii) Draw the corresponding control word diagram and describe the function of each field
iii) Give the bit values in the control word for the following micro-operation

$$
\begin{array}{ll}
\text { I } & (\mathrm{R} 1 \leftarrow \mathrm{R} 1-\mathrm{R} 6) \\
\text { II } & (\mathrm{R} 1 \leftarrow \mathrm{R} 4)
\end{array}
$$

Question FOUR

a) Define the following:
(i) Decoder
(ii) Multiplexer
(iii) Demultiplexer
[3 marks]
b) Implement
$F(A, B, C, D)=\sum_{M}(1,4,5,7,9,12,13)$ using a $4-$ to -1 multiplexer
[6 marks]
c) Draw a diagram of bus system for four registers of 4-bits each. The bus is to be constructed with multiplexers
d) i) Differentiate between Algorithm State Machine (ASM) and conventional flow chart. ii) Using Figure Q4(d) interpret the events

FIG. Q4(d)

Question FIVE

a) Design an adder/ subtractror circuit with one selection variable, S and two inputs A and B when $\mathrm{S}=0$, the circuit performs $\mathrm{A}+\mathrm{B}$ and when $\mathrm{S}=1$, the circuit performs $\mathrm{A}-\mathrm{B}$. Draw the logic diagram of two typical stages
[14 Marks]
b) With the aid of a diagram, explain the operation of a two-port scratchpad memory used by a processor unit
[6 marks]

