

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY **SUPLEMENTARY/SPECIAL EXAMINATIONS** FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

EEE 2511: POWER SYSTEM ANALYSIS I

TIME: 2 HOURS

SERIES: SEPTEMBER, 2018

INSTRUCTIONS TO CANDIDATES

- 1. You are required to have the following for this examination;
 - Answer Booklet
 - A Non- Programmable Scientific Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Answer Question ONE (COMPULSORY) and any other TWO Questions
- 4. This paper consists of **FIVE** printed pages.

Question 1 (Compulsory)

- (a) Explain the following with reference to load flow studies
 - (i) Importance of load flow studies
 - (ii) Why the solution of power flow problem is not possible by conventional methods.
 - (iii) Majority of buses in power systems are PQ buses
 - (iv) Why one of the buses in a power system is taken as reference bus for power flow studies (8 marks)
- (b) Solve the following equation by Gauss Seidel method $x^2 6x + 2 = 0$ (4 marks)
- (c) A one line diagram for a four-bus system is shown in Figure Q1 (c).

The line impedance are given in table 1. Determine the Y_{bus}. (6 marks)

© 2018 Technical University of Mombasa

TABLE 1

S/NO	LINE (BUS TO BUS)	Rpu	XPU
1	1-2	0.05	0.15
2	1-3	0.10	0.30
3	2-3	0.15	0.45
4	2-4	0.10	0.30
5	3-4	0.05	0.15

Figure Q 1 (C)

(d) For the two bus system of Figure Q1 (d) with data as shown and with

 $Y_{11} = Y_{22} = 1.6 / -80^{\circ}$ pu and $Y_{21} = Y_{12} = 1.9 / -100^{\circ}$ pu. Determine;

- (i) The per unit voltage at bus 2 by Gauss –Seidel method.
- (ii) Compute the power on the Swing bus of the network (12 marks)

Figure Q1 (d)

QUESTION TWO

(a) Solve the following equations by the Newton-Raphson method:

 $\begin{array}{l} X_1{}^2 - 4 - 4 = 0 \\ 2x_1 - x_2 - 2 = 0 \end{array}$

Let $x_1^{(0)} = 1$ and $x_2^{(0)} = -1$ be the starting point for the first iteration.

(7 Marks)

(b) For the system shown in Figure Q2(b) the Y_{bus} is given as:

	24.23< - 75.95 ⁰	$12.31 < 104.04^{\circ}$	$12.31 < 104.04^{\circ}$
$Y_{bus} =$	12.31<104.040	$24.23 < -75.95^{\circ}$	12.31<104.040
	12.31<104.040	$12.31 < 104.04^{\circ}$	24.23< - 75.95 ⁰

Give the per-unit voltages and power as shown, determine V_2 by the Newton-Raphson method. (14 marks)

Figure 2Q (b)

QUESTION THREE

- (a) Derive the following;
 - (i) Gauss Seidel Power flow equation
 - (ii) Mathematical model of a phase shifting transformer to be used in power flow equation.

(9 Marks)

(b) For the system shown in Figure Q3(b). The bus admittance matrix is given by:

$$Y_{bus} = \begin{cases} 3-j9 & -2+j6 & -1+j3 & 0\\ -2+j6 & 3.666-j11 & -1+j2 & -1+j3\\ -1+j3 & -0.666+j2 & 3.666-j11 & -2+j6\\ 0 & -1+j3 & -2+j6 & 3-j9 \end{cases} pu$$

With complex power buses 2, 3 and 4 as shown in the Figure Q3 (b) determine the value for V_2 that is produced by the first and second iteration of the Gauss-Siedel procedure. Also determine V_3 and V_4

(11 Marks)

© 2018 Technical University of Mombasa

QUESTION FOUR

(a) Explain any **THREE** types of Bus-bars used in power system.

(6 Marks)

(b) Compare the Gauss Seidel Method with the Newton Raphason method stating situation where each is applicable.

(6 Marks)

(c) With aid of a flow chart explain the Newton-Raphason iterative method of solving load flow problems. (8 Marks)

QUESTION FIVE

(a) Short term demand forecasting plays an important role in the process of regulation. Hence, a precise estimate of demand is important for the purpose of setting tariff. Explain any **THREE** reasons for a detailed consumer category-wise consumption forecast.

(6 Marks)

(b) (i) Describe the econometric approach of STLF and show how you can calculate the Electricity Demand (ED).

(ii) Explain any **TWO** demerits of Econometric approach. © *2018 Technical University of Mombasa*

(8 Marks)

(c) Explain any **THREE** reasons why we need good predictions.

(6 Marks)

© 2018 Technical University of Mombasa

