

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY **SUPPLEMENTARY/SPECIAL** EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

EEE 2510: POWER SYSTEM PROTECTION

TIME: 2 HOURS SERIES: SEPTEMBER, 2018

INSTRUCTIONS TO CANDIDATES

- 1. You are required to have the following for this examination;
 - Answer Booklet
 - A Non- Programmable Scientific Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Answer Question **ONE** (**COMPULSORY**) and any other **TWO** Questions
- 4. This paper consists of **FIVE** printed pages.

QUESTION ONE [20 MARKS]

(a) Explain any FOUR desirable features of busbar protection

(4 marks)

- (b) Using the torque equation derive the following characteristics and draw for EACH relay its characteristic and indicate clearly the zones of operation and no operation.
 - (i) Impedance relay
 - (ii) Reactance relay
 - (iii) Mho relay

(12 marks)

(c) Draw the "Merz Price circulating current protection scheme" for the protection of alternator against stator faults (phase- to – phase and phase – to – ground) and explain the operation.

(8 marks)

(d) Explain why 100% winding of alternator cannot be protected using the method with earthing resistance to limit the fault current.

(6 marks)

QUESTION TWO [20 MARKS]

- (a) (i) With the aid of a diagram explain a biased differential protection scheme applied to a three phase transformer
 - (ii) Tabulate the different types of CT connections used for different types of transformer primary and secondary winding connections.

(12 marks)

(b) With the aid of a block diagram describe the carrier system of protection.

(8 marks)

(c) A three phase transformer having a line voltage ratio of 400V/33,000V is connected in star-delta. The CTs on the 400V side have a current ratio of 1000/5. Determine the ratio of CTs on the 33,000V side. (4 marks)

QUESTION THREE [20 MARKS]

- (a) With the aid of sketches(s) and relevant equations, Explain the problems associated with interruption in circuit breakers resulting from the following;
 - (i) Rate of Rise of Re-striking Voltage (RRRV).
 - (ii) Current Chopping
 - (iii) Capacitive current Breaking.

(9 marks)

- (b) Explain FOUR ways used for arc extinction while using High resistance methods (4 marks)
- (c) A 50Hz, 11kv, three—phase alternator with earthed neutral has a reactance of 5Ω per phase, and is connected to busbar through a circuit breaker. The capacitance to earth between the alternator and the circuit breaker is $0.02\mu\text{F}$ per phase. Assuming the

resistances of the generator to be negligible. Determine the following;

- (i) Maximum voltage across the contacts of the circuit breaker
- (ii) Frequency of oscillations.
- (iii) The average rate of rise of Restriking voltage up to the first peak

(7 marks)

QUESTION FOUR [20 MARKS]

- a) Explain FOUR ways used for arc extinction while using High resistance methods (4 marks)
- b) With the aid of a circuit, current and voltage waveform and a Laplace equivalent circuit derive Re-striking Voltage. (10 marks)
- c) A circuit breaker interrupts a magnetizing current of 100MVA transformer at 220kV the magnetizing current of transformer is 5% of the full load current. Determine the maximum voltage that may appear across the gap of the breaker. When magnetizing current is interrupted at 53% of its peak value. The stray capacitance is 2500 micro farad. The inductance is 30H.

 (6

 marks)

QUESTION FIVE [20 MARKS]

(a) With the aid of sketches(s)/block diagram describe two categories of faults in a synchronous generators, stating in EACH case how the fault can be mitigated.

(12 marks)

(b) A 3- phase 20MVA, 11KV star connected alternator has a synchronous reactance of 2.5Ω /phase and resistance of 0.75Ω /phase. It is being protected by a Merz-price balanced current system. Determine what portion of the winding remains unprotected and if the neutral of the alternator is earthed through a resistor 5Ω . Assume that the relay operates, when the out of balance current exceeds 25% of the load current.

(9 marks)