

### **TECHNICAL UNIVERSITY OF MOMBASA**

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

## SUPPLEMENTARY UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

EEE2504: QUANTUM ELECTRONICS

## SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER, 2018

# TIME: 2 HOURS

### DATE: SEPTEMBER, 2018

#### **Instructions to Candidates**

You should have the following for this examination *Answer Booklet, examination pass and student ID* 1. This paper consists of FIVE questions. Attempt QUESTION ONE and any other TWO QUESTIONS 2. Physical constants and properties are provided at the end of the paper. **Do not write on the question paper.** 

#### **Question ONE (Compulsory)**

(b)

- (a) (i) Briefly outline any THREE general requirements for a source in optical fiber communications.
  - (ii) Discuss THREE areas in which the injection laser fulfils these requirements.
  - (iii) Comment on any drawbacks of using the injection laser as an optical fiber communication device. (10 marks)
  - (i) Define the relative index difference for an optical fiber.
    - (ii) Show how the relative index difference is related to the numerical aperture.
    - (iii) The velocity of light in the core of a step index is 2.01x10<sup>8</sup> ms<sup>-1</sup>, and the critical angle at the core-cladding interface is 80<sup>0</sup>. Determine the numerical aperture and

#### © 2018 Technical University of Mombasa

the acceptance angle for the fiber in air, assuming it has a core diameter suitable for consideration by ray analysis. The velocity of light in a vacuum is 2.998x10<sup>8</sup>.

#### (10 marks)

- (c) (i) Discuss the operation of the silicon RAPD, describing how it differs from the p-n photodiode
  - (ii) Outline the advantage and drawbacks with the use of the RAPD as a detector for optical fiber communications
  - (iii) When 800photons per second are incident on a p-i-n photo-diode operating a wavelength of 1.3µm they generate an average 550 electrons per second which are collected. Calculate the responsivity of the device. (10 marks)

#### Question TWO

- (a) (i) Describe the technique used to give both electrical and optical confinement in multimode injection lasers.
  - (ii) Calculate the ratio of the stimulated emission rate to the spontaneous emission rate for an incandescent lamp operating at a temperature of 1000K. It may be assumed that the average operating wavelength of 0.5µm. (10 marks)
- (b) (i) Explain the term solid-state laser
  - (ii) With the aid of a well labeled diagram briefly explain the design structure and operation of a Ruby laser. (10 marks)

#### Question THREE

- (a) (i) Describe the phenomena of modal noise in optical fibers and suggest how it may be avoided.
  - (ii) The mean optical power launched into an optical fiber link is 1.5mW and the fiber has an attenuation of 0.5 dBkm<sup>-1</sup>.Determine the maximum possible link length without repeaters (assuming lossless connectors) when the maximum mean optical power level required at the detector is 2µW.

#### (4 marks)

(b) In single mode fibers, the total dispersion is composed of three components. State and explain these components.

#### (6 marks)

(c) Estimate the critical radius of curvature at which large bending losses occur in each of the two step index fibers with the following parameters:

#### © 2018 Technical University of Mombasa

Page **3** of **4** 

- (i) A multimode fiber with a core refractive index of 1.5, a relative refractive index difference of 3% and an operating wavelength of 0.82  $\mu$ m.
- (ii) An 8µm core diameter single-mode fiber with a core refractive index the same as
  (i), a relative refractive index difference of 0.3% and operating wavelength of 1.55µm.

# Question FOUR

(a) Using Bohr atomic model derive expression for the velocity and radius of an electron spinning in its orbit.

### (10 marks)

- (b) A p-i-n photodiode on average generates one electron-hole pair per three incident photons at a wavelength of 0.8 μm. assuming all the electrons are collected calculate:
  - (i) The quantum efficiency of the device.
  - (ii) Its maximum possible band-gap energy
  - (iii) The mean output photocurrent when the received optical power is  $10^{-7}$  W

#### (6 marks)

c) Explain the detection process in the p-n photodiode. Compare this device with the p-i-n photodiode.

#### (4 marks)

#### Question FIVE

- (a) With the aid of a well labeled diagram explain the functions of the main components of a laser system. (7 marks)
- (b) (i) State THREE main functions of cladding of an optical fiber.
  - (ii) A silica optical fiber with a core diameter large enough to be considered by ray theory analysis has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine:
    - (I) The critical angle at the core cladding interface
    - (II) The NA for the fiber
    - (III) The acceptance angle in air for the fiber.

(8 marks)

#### © 2018 Technical University of Mombasa

#### (10 marks)

- (c) When the mean optical power launched into an 8km length of fiber is 120  $\mu$ W, the mean optical power at the fiber output is 3  $\mu$ W. Determine :
  - (i) The overall signal attenuation in decibels, through the fiber assuming there are no connectors or splicers.
  - (ii) The signal attenuation per kilometer for the fiber.
  - (iii) The overall signal attenuation for a 10 km optical link using the same fiber with splices at 1km intervals, each giving an attenuation of 1 dB.
- (iv) The numerical input/output power ratio in (iii). (5 marks)