THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering \& Technology

DEPARTMENT OF COMPUTING AND

INFORMATION TECHNOLOGY (MODULE I)

DIPLOMA IN INFORMATION \& COMMUNICATION TECHNOLOGY

END OF SEMESTER EXAMINATIONS APRIL/MAY 2010 SERIES

PHYSICS

TIME: 2 hours

Question ONE

(a). Define the following terms:
(i). Resistance
(ii). Reactance
(iii). Impedance
(b). Determine the colour codes of the following resistors:
(i). $\quad 1.9 \mathrm{M} \Omega \pm 20 \%$
(ii). $330 \mathrm{~K} \Omega \pm 10 \%$
(iii). $\quad 470 \Omega \pm 5 \%$
(iv). $\quad 4.7 \mathrm{M} \Omega \pm 2 \%$
[4 marks]
(c). Calculate the maximum and the minimum values of the following resistors given the colour codes below: (all answers in $\mathrm{K} \Omega$).
(i). red, green, yellow
(ii). blue, black, purple, silver
(iii). yellow, red, yellow, gold
(d). With the aid of graphs, explain the Ohm's law.
[10 marks]

Question TWO

(a). Define the following terms:
(i). Capacitance
(ii). Time constant
(iii). Energy

[6 marks]

(b). Differentiate between A.C and D.C supply.
(c). Three capacitors of $30 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$, and $400 \mu \mathrm{~F}$ are connected in series and then connected to $360 \mu \mathrm{~F}$ capacitor is parallel. The network is then supplied with 12 Vd.c.
(i). Draw the circuit diagram.
(ii). Calculate (i). the total capacitance in the circuit.
(iii). Charge across the $360 \mu \mathrm{~F}$ capacitor.
(iv). Energy in the circuit.
[11 Marks)

Question THREE

(a). Describe the Kirchhoff's laws on:
(i). Current
(ii). Voltage
(b). Differentiate between step-up and step-down transformers.
(c). A step-down transformer is supplied with $110 \mathrm{v}, 60 \mathrm{~Hz}$. If the turn's ratio is 4:land the output current is measured to be 10A. Calculate:
(i). input current
(ii). output current
(iii). output power
(d). State TWO applications of transformers.
[2 Marks]
(e). Explain the following transformer losses:
(i). Eddy current losses
(ii). Hysteresis losses
(iii). Power losses
[6 Marks]

Question FOUR

(a). Define the following terms:
(i). Base
(ii). Emitter
(iii). Collector
[8 Marks]
(b). With the aid of circuit diagrams explain the THREE transistors configuration.
[9 marks]
(c). Explain the following:
(i). Intrinsic semiconductor
(ii). Extrinsic semiconductor
(iii). Doping

Question FIVE

(a). Using phasor diagrams show that in a series R-L-C circuit $Z=\sqrt{R^{2}}=+\left(X_{L}-X_{C}\right)^{2}$
[9 Marks]
(b). A series R-L-C circuit has a resistance of 10Ω, inductive reactance of $52 \Omega, \mathrm{X}_{\mathrm{C}}=30 \Omega$ is supplied with $110 \mathrm{v}, 60 \mathrm{~Hz}$. Calculate:
(i). Inductance of the coil
(ii). Capacitance of a capacitor
(iii). Current in the circuit
(iv). Phase angle
(v). Power in the circuit
[10 marks]
(c). Explain the following terms:
(i). Rectification
(ii). Voltage regulation

