

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and technology

Department of Electrical and Electronic Engineering

UNIVERSITY EXAMINATION FOR:

Bachelor of Science in Electrical and Electronic Engineering

EEE 2502: CONTROL ENGINEERING III.

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018 SERIES

TIME: 2 HOURS

DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **five** Questions; Question ONE is compulsory. In addition attempt any Other TWO Questions.

Do not write on the question paper.

Question ONE (Compulsory 30 marks)

a) A system is represented by the following state and output equations, if the desired closed loop poles are $s_{1,2} = -2 \pm j2$ and desired observer poles are $p_{1,2} = -6$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

 $y(t) = \begin{bmatrix} 5 & 3 \end{bmatrix} x(t), r(t) = 1.$

- i) Find the full state feedback,
- ii) Find the full state observer
- iii) draw the diagram of the closed loop system with the controller and the observer

(20 marks)

b) With the aid of Diagram explain the elements of a Digital control system

(10 marks)

Question TWO

- a) Figure Q2 is a digital control system, when the controller K is unity and sampling time is 0.5 seconds determine;
 - i) The open loop transfer function
 - ii) The closed loop transfer function
 - iii) The difference equation for the discrete time response
 - iv) A sketch of the unit step response assuming zero initial conditions
 - v) The steady state value of the output

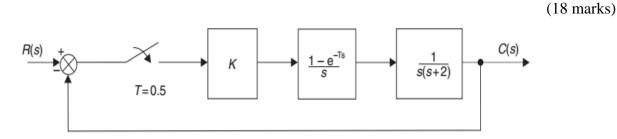


Figure Q2

b) State the Shannon's sampling theorem

Question THREE

a) Given the following transfer function

$$G(s) = \frac{s+3}{(s+1)(s+2)}$$

Determine

- i) the parallel, series and general state space formulations.
- ii) draw out the resulting system diagrams.
- **b**) Outline any Four Drawbacks of the transfer function model

(2 marks)

(16 marks)

(4 marks)

Question FOUR

a) Given $U(z) = \frac{z}{(z-2)(z-4)}$, Expand U(z) into partial fraction form and find its time domain representation using inverse z-transform

b) For the transfer function
$$G(s) = \frac{1}{(s+1)(s+2)}$$
 obtain the pulse transfer function $G(z)$ (10 marks)
(10 marks)

Question FIVE

a) Given the transfer function of the system as

$$\frac{Y(s)}{U(s)} = \frac{b_o s^3 + b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

- i) derive the state model in controllable canonical form
- ii) Draw the block diagram

(14 marks)

b) Give any THREE reasons why the transfer function model is not preferred compared to state space model

(6 marks)

Table of Laplace and Z-transforms

	X(s)	x(t)	x(kT) or $x(k)$	<i>X</i> (<i>z</i>)
1.	_	-	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1
2.	_	-	$ \begin{array}{c} \delta_0(n-k)\\ 1 & n=k\\ 0 & n\neq k \end{array} $	<i>z</i> ^{-<i>k</i>}
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e^{-akT}	$\frac{1}{1-e^{-a^T}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2 z^{-1} \left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^3}$
7.	$\frac{6}{s^4}$	t^3	$(kT)^3$	$T^{3} = -1(1 + 4 = -1 + -2)$
8.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{1 \ z \ (1+4z \ +z \)}{(1-z^{-1})^4}$ $\frac{(1-e^{-aT})^{z^{-1}}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$ $\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$ $\frac{1}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
12.	$\frac{2}{(s+a)^3}$	$t^2 e^{-at}$	$(kT)^2 e^{-akT}$	$\frac{1e^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$ $\frac{1-(1+aT)e^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$ $\frac{T^2e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^3}$ $\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{\left[\left(aT-1+e^{-aT}\right)+\left(1-e^{-aT}-aTe^{-aT}\right)z^{-1}\right]z^{-1}}{\left(1-z^{-1}\right)^{2}\left(1-e^{-aT}z^{-1}\right)}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin <i>w</i> t	sin <i>w</i> kT	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos <i>wt</i>	$\cos \omega kT$	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	e ^{-at} sin <i>w</i> t	$e^{-akT}\sin \omega kT$	$\frac{e^{-a^{T}}z^{-1}\sin\omega T}{1-2e^{-a^{T}}z^{-1}\cos\omega T+e^{-2a^{T}}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	e ^{-at} cos <i>w</i> t	$e^{-akT}\cos \omega kT$	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	_	_	a^k	$\frac{1}{1-az^{-1}}$
19.	_	-	a^{k-l} $k = 1, 2, 3, \dots$	$\frac{z^{-1}}{1-az^{-1}}$
20.	_	-	ka ^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.	-	-	$k^2 a^{k-1}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	_	-	k ³ a ^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.	-	_	k ⁴ a ^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.	_	-	$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$

 $x(t) = 0 \qquad \text{for } t < 0$ $r(kT) = r(k) = 0 \qquad \text{for } k < 0$

$$x(kT) = x(k) = 0 \quad \text{for } k < 0$$

Unless otherwise noted, $k = 0, 1, 2, 3, \ldots$

©Technical University of Mombasa

Definition of the Z-transform

$$\mathscr{X}{x(k)} = X(z) = \sum_{k=0}^{\infty} x(k) z^{-k}$$

Important properties and theorems of the Z-transform

	x(t) or $x(k)$	$Z{x(t)}$ or $Z{x(k)}$
1.	ax(t)	aX(z)
2.	$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$
3.	x(t+T) or $x(k+1)$	zX(z) - zx(0)
4.	x(t+2T)	$z^2 X(z) - z^2 x(0) - z x(T)$
5.	x(k+2)	$z^{2}X(z) - z^{2}x(0) - zx(1)$
6.	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \dots - zx(kT - T)$
7.	x(t-kT)	$z^{-k}X(z)$
8.	x(n+k)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(1) - \dots - zx(k-1)$
9.	x(n-k)	$z^{-k}X(z)$
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$
11.	kx(k)	$-z\frac{d}{dz}X(z)$
12.	$e^{-at}x(t)$	$X(ze^{aT})$
13.	$e^{-ak}x(k)$	$X(ze^a)$
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
15.	$ka^kx(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$
16.	<i>x</i> (0)	$\lim_{z \to \infty} X(z) \text{if the limit exists}$
17.	$x(\infty)$	$\lim_{z \to 1} \left[(1 - z^{-1}) X(z) \right]$ if $(1 - z^{-1}) X(z)$ is analytic on and outside the unit circle
18.	$\nabla x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z) - zx(0)
20.	$\sum_{k=0}^n x(k)$	$\frac{1}{1-z^{-1}}X(z)$
21.	$\frac{\partial}{\partial a}x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$
23.	$\sum_{k=0}^{n} x(kT) y(nT - kT)$	X(z)Y(z)
24.	$\sum_{k=0}^{\infty} x(k)$	X(1)