

TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2017/2018

EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY, BACHELOR OF TECHNOLOGY IN MARINE ENGINEERING AND BACHELOR OF TECHNOLOGY IN MECHANICAL **ENGINEERING**

SMA 2173: CALCULUS II

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

DATE: JULY 2017

DURATION: 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30 MARKS)

(a.) The parametric equations of a curve are

$$x = \frac{t}{1+t}, y = \frac{t^2}{1+t}$$

Find

(a) its Cartesian equation	(4 marks)
(b) $\frac{dy}{dx}$ in terms of t.	(6 marks)

- (c) the coordinates of the point(s) where the gradient is -3. (6 marks)
- (d) the equation of the tangent at the point where t = 2. (6 marks)
- (e) the equation of the normal at the point where t = 2. (4 marks)
- (f) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin 2x \cos x dx$ (4 marks)

©Technical University of Mombasa

QUESTION TWO (20 MARKS)

(a) If y = tan x, show that
$$\frac{d^2 y}{dx^2} = 2 \tan x + 2 \tan^3 x$$
 (3 marks)

(b) Find the value of
$$\int_{2}^{3} \frac{dx}{x^{2} - 4x + 13}$$
 (6 marks)

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} \sin^3 x dx$$
 (5 marks)

(d) Evaluate
$$\int_0^1 \frac{x dx}{\sqrt{(1-x^2)}}$$
 (6 marks)

QUESTION THREE (20 MARKS)

(a.) A function y of x is given by the following table:-

X	0	0.1	0.2	0.3	0.4	0.5	0.6
у	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867

Find $\int_0^{0.6} y dx$ by

(i.)	the trapezoidal rule	(7 marks)
(ii.)	the simpson's rule	(7 marks)
(b.) Find	$\int x \tan^{-1} x$	(6 marks)

QUESTION FOUR (20 MARKS)

(a.) Find
$$\int \frac{x^3}{x^2 + x - 20}$$
 by first resolving into partial fractions (7 marks)

(b) Show that
$$\frac{d(\tanh^2 x)}{dx} = 2 \tanh x \sec h^2 x$$
 (6 marks)

(c) By making a suitable hyperbolic substitution, find

$$\int_{0}^{1} \frac{1}{\sqrt{\left(1+9x^{2}\right)}} dx$$

(7 marks)

QUESTION FIVE (20 MARKS)

(a.) Find a suitable integrating factor and hence solve the differential equation

$$x\frac{dy}{dx} + 3y = \frac{e^x}{x^2}$$

(7 marks)

(b.) Find the area enclosed by the curve $y = \sin x$ and the x-axis between x = 0 and $x = 2\pi$.

(7 marks)

(c.) Find the volume generated by the curve $y^2 = 4x$ between x = 0 and x = 4, is rotated about the x – axis. (6 marks)