

TECHNICAL UNIVERSITY OF MOMBASA
UNIVERSITY EXAMINATIONS 2017/2018

EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY, BACHELOR OF TECHNOLOGY IN MARINE ENGINEERING AND BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING

SMA 2173: CALCULUS II
SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: SEPTEMBER 2018
DATE: JULY 2017
DURATION: 2 HOURS
INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO
QUESTION ONE (30 MARKS)
(a.) The parametric equations of a curve are

$$
x=\frac{t}{1+t}, y=\frac{t^{2}}{1+t}
$$

Find
(a) its Cartesian equation
(4 marks)
(b) $\frac{d y}{d x}$ in terms of t .
(6 marks)
(c) the coordinates of the point(s) where the gradient is -3 .
(d) the equation of the tangent at the point where $t=2$.
(e) the equation of the normal at the point where $t=2$.
(f) Evaluate $\int_{0}^{\pi / 2} \sin 2 x \cos x d x$

QUESTION TWO (20 MARKS)

(a) If $y=\tan x$, show that $\frac{d^{2} y}{d x^{2}}=2 \tan x+2 \tan ^{3} x$
(3 marks)
(b) Find the value of $\int_{2}^{3} \frac{d x}{x^{2}-4 x+13}$
(6 marks)
(c) Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x d x$
(d) Evaluate $\int_{0}^{1} \frac{x d x}{\sqrt{\left(1-x^{2}\right)}}$

QUESTION THREE (20 MARKS)

(a.) A function y of x is given by the following table:-

x	$\mathbf{0}$	0.1	0.2	0.3	0.4	0.5	0.6
y	$\mathbf{0 . 0 0 0 0}$	$\mathbf{0 . 0 4 9 9}$	$\mathbf{0 . 0 9 9 5}$	$\mathbf{0 . 1 4 8 3}$	$\mathbf{0 . 1 9 6 0}$	$\mathbf{0 . 2 4 2 3}$	$\mathbf{0 . 2 8 6 7}$

Find $\int_{0}^{0.6} y d x$ by
(i.) the trapezoidal rule
(ii.) the simpson's rule
(b.) Find $\int x \tan ^{-1} x$

QUESTION FOUR (20 MARKS)

(a.) Find $\int \frac{x^{3}}{x^{2}+x-20}$ by first resolving into partial fractions
(b) Show that $\frac{d\left(\tanh ^{2} \mathrm{x}\right)}{d x}=2 \tanh x \sec h^{2} x$
(c) By making a suitable hyperbolic substitution, find

$$
\int_{0}^{1} \frac{1}{\sqrt{\left(1+9 x^{2}\right)}} d x
$$

QUESTION FIVE (20 MARKS)

(a.) Find a suitable integrating factor and hence solve the differential equation

$$
x \frac{d y}{d x}+3 y=\frac{e^{x}}{x^{2}}
$$

(b.) Find the area enclosed by the curve $\mathrm{y}=\sin \mathrm{x}$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$.
(c.) Find the volume generated by the curve $y^{2}=4 x$ between $x=0$ and $x=4$, is rotated about the x -axis.

