

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

SEPTEMBER 2018 SERIES EXAMINATION
AMA 4102: GEOMETRY

BSSC, BMCS, BSMF, BSCE, BTCE, BTEE, BSEE, BSME, BTME, BSMD AND BTMD

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. Find the normal distance from the point $(1,3)$ to the line $2 x+3 y=6$
b. Prove that $\frac{\cos ^{2} \theta\left(1-\sec ^{2} \theta\right) \sin \theta}{\left(1-\sin ^{2} \theta\right) \cos \theta \tan ^{2} \theta}=-\tan \theta$
c. Find the equation of an ellipse whose vertices are points $(-1,2)$ and $(9,2)$ while eccentricity is $\frac{2}{3}$
d. Determine the length of a tangent from the point $(5,7)$ to the circle whose equation is $x^{2}+y^{2}-4 x-6 y+9=0$
e. If $\sin A=\frac{3}{5}$ and $\cos B=\frac{15}{17}$ where A is obtuse and B acute, find the exact value of $\sin (A+B)$ (4 mks)
f. Find the equations of the two tangents that can be drawn from the point $(2,3)$ to the parabola $y^{2}=4 x$
g. Find k so that the lines $\frac{x+2}{-3}=\frac{2 y-1}{2 k}=\frac{z+5}{2}$ and $\frac{x}{3 k}=\frac{y-5}{1}=\frac{z+3}{-5}$ may be perpendicular to each other.
h. Sketch $y=4 \cos 2 x$ from $x=0$ to $x=360$. and use it to state the amplitude and the period.

QUESTION TWO (20 marks)

a. In a triangular lawn the length of two sides and there included angle are

$$
a=
$$

$12 \mathrm{mb}=10 \mathrm{~m}$ and $<c=30^{\circ}$, calculate the radius of the circumcircle just touching the corners. (4 mks)
b. Find an equation in the form $a x+b y+c=0$ for a line which passes through the point of intersection of the lines $x-3 y=4$ and $3 x+y=2$ being also perpendicular to the line $4 x-$ $3 y-7=0$
c. Discuss the equation stating all properties of the hyperbola, hence sketch the curves indicating the asymptotes, foci and vertex.

QUESTION THREE (20 marks)

a. Solve the equation $3 \cos 2 \theta+\sin \theta=1$ for values of $0 \leq \theta \leq 360^{\circ}$
(6 mks)
b. Find the equations of the line through ($1,-2,3$) and perpendicular to the plane $2 x+y-z=5$
c. Give a brief definition about the following terms
i. Direction ratios
ii. Direction cosines
d. Give the parameterization of the line joining the points $(2,2,1)$ and $(4,6,6)$

QUESTION FOUR (20 marks)

a. Plot accurately the graph of the polar equation $r=\sin 2 \theta$ and mark the line of symmetry on the grid. How many lines of symmetry exist in the figure?
b. Solve the equation $12 \cos ^{2} \theta+\sin \theta=11$ on the domain $0^{\circ} \leq \theta \leq 360^{\circ}$
c. Determine the points of intersection of the line $2 y=x+6$ and the parabola $y=8 x$ hence find the equations of the tangent and normal lines at these intersection points.

QUESTION FIVE (20 marks)

a. Find the eccentricity and semi latus rectum of the eclipse $4 x^{2}+3 y^{2}=5$
b. Determine the equations of the tangent to the circle $x^{2}+y^{2}-4 x-2 y-8=0$ which is parallel to the line $3 x+2 y=0$
c. Solve the equation $\tan \theta=2 \sin \theta$
d. Find the magnitude and equations of the shortest distance between the straight line $\frac{x+3}{-4}=$ $\frac{y-6}{3}=\frac{z}{2}$ and $\frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$

