THE DEGREE OF BACHELOR OF

 BTMD/BSMDAMA 4101: ALGEBRA SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES:

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE AND COMPUTER SCIENCE
AMA 4420: DIFFERENTIAL GEOMETRY

END OF SEMESTER EXAMINATION

SERIES: FEBRUARY 2018
TIME: 2 HOURS

DATE: FEBRUARY 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of Choose No questions. Attempt QUESTION ONE AND ANY OTHER TWO QUESTIONS
Do not write on the question paper.

Question ONE

a) Find the constant a such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}-a \hat{j}+5 \hat{k}$ are coplanar.
(5mks)
b) Find the equation of a plane passing the point $(3,-1,-2)$ and perpendicular to the vector $6 \vec{i}+5 \vec{j}-8 \vec{k}$
c) Determine the equation of the tangent line to the curve $\vec{r}=e^{t} \vec{i}-e^{-t} \vec{j}+t^{2} \vec{k}$ at $t=1$
d) Find the length of the arc $\vec{r}=e^{t} \cos t \vec{e}_{1}+e^{t} \vec{e}_{2}+e^{t} \vec{e}_{3}, 0 \leq t \leq \pi$
e) Find the first fundamental magnitude for surface of revolution $x=f(u) \cos v, y=f(u) \sin v, z=\varphi(u)$
f) Find the curvature of the helix $\vec{r}(t)=a \cos \omega t \hat{i}+a \sin \omega t \hat{j}+b t \hat{k}$

TIME:2HOURS

DATE: 24Nov2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE (30 MARKS)

a) Solve for x in the following equations
i) $3^{x}=81$
ii) $5^{x}=4$
iii) $\log _{x} 3+\log _{x} 27=2$
b) Find the value of k if $x^{2}+8 x+k$ is a perfect square
c) Express $-5+5 i$ in polar form
d) A committee of 5 people is to be chosen from a group of 6 men and 4 women. How many committees are possible if there are restrictions
e) Find the sum of the first 10 terms in the following series
i) $5+9+13+\ldots$
ii) $12+4+\frac{4}{3}+\ldots$

Question TWO (20 MARKS)

a) Given $\frac{2}{3 \sqrt{3}-2 \sqrt{2}}+\frac{1}{3 \sqrt{3}+2 \sqrt{2}}=\mathrm{a} \sqrt{b+c \sqrt{d}}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants. Determine the values $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ (5 marks)
b) Show that $\log _{a} b=\frac{1}{\log _{b} a}$, hence evaluate $\log _{5} 80$
c) Solve the following equations using the method indicated in brackets.
i) $2 x^{2}+14 x+9=0 \quad$ (Completing the square)
ii) $2 x^{2}+x-12=0 \quad$ (Quadratic formula)

Question THREE (20 MARKS)

a) Find the values of a and b if $a x^{4}+b x^{3}-8 x^{2}+6 x-6$ has a remainder of $2 \mathrm{x}+1$ when divided by $x^{2}-1$
b) Show that $2 x^{3}+x^{2}-13 x+6$ is divisible by $x-2$, and find the other factors of the expression
c) Given $a_{n}=f(n)=\frac{n-2}{3}$, Find the first five terms of the finite sequence

Question FOUR (20 MARKS)

a) Draw the graph of $y=x^{3}-3 x^{2}+5 x-5$ for $-3 \leq x \leq 5$ and use your graph to solve:
i) $x^{3}-3 x^{2}+5 x-5=0$
ii) $x^{3}-3 x^{2}+2 x-9=0$
b) Solve for x given that $\log _{2} 5(x)-\log _{4} 2 x=3$
c) Find $C(7,3)$

Question FIVE (20 MARKS)

a) Find the sixth term in the expression $(2 a+b)^{9}$
b) Show that $2^{n} \leq 2^{n+1} \leq 2^{n-1}-1$
c) Determine the modulus and argument of $\mathbb{Z}=2+2 \sqrt{3 i}$ and express \mathbb{Z} in polar form
d) Perform the indicated division leaving your answer as a complex number

$$
\frac{1+\sqrt{-4}}{3-\sqrt{-9}}
$$

