

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

THE DEGREE OF BACHELOR OF

BTMD/BSMD

AMA 4101: ALGEBRA

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES:

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE AND COMPUTER SCIENCE

AMA 4420: DIFFERENTIAL GEOMETRY

END OF SEMESTER EXAMINATION

SERIES: FEBRUARY 2018

TIME: 2 HOURS

DATE: FEBRUARY 2018

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of Choose No questions. Attempt QUESTION ONE AND ANY OTHER TWO QUESTIONS **Do not write on the question paper.**

Question ONE

a) Find the constant *a* such that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} - a\hat{j} + 5\hat{k}$ are coplanar.

(5mks)

- b) Find the equation of a plane passing the point (3,-1,-2) and perpendicular to the vector $6\vec{i} + 5\vec{j} 8\vec{k}$ (5mks)
- c) Determine the equation of the tangent line to the curve $\vec{r} = e^t \vec{i} e^{-t} \vec{j} + t^2 \vec{k}$ at t = 1 (5mks)
- d) Find the length of the arc $\vec{r} = e^t \cos t \vec{e}_1 + e^t \vec{e}_2 + e^t \vec{e}_3, 0 \le t \le \pi$ (5mks)
- e) Find the first fundamental magnitude for surface of revolution $x = f(u)\cos v$, $y = f(u)\sin v$, $z = \phi(u)$ (5mks)

f) Find the curvature of the helix $\vec{r}(t) = a \cos \omega t \hat{i} + a \sin \omega t \hat{j} + b t \hat{k}$ (5mks) ©*Technical University of Mombasa* Page 3 of 5

TIME:2HOURS

DATE:24Nov2017

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE (30 MARKS)

a) Solve for x in the following equations

i)
$$3^x = 81$$
 (2 marks)
ii) $5^x = 4$ (3 marks)

iii)
$$\log_x 3 + \log_x 27 = 2$$
 (4 marks)

b) Find the value of k if $x^2 + 8x + k$ is a perfect square

c) Express -5 + 5i in polar form (4 marks)

d) A committee of 5 people is to be chosen from a group of 6 men and 4 women. How many committees are possible if there are restrictions (4 marks)

e) Find the sum of the first 10 terms in the following series

i)
$$5+9+13+...$$
 (4 marks)

ii)
$$12 + 4 + \frac{4}{3} + \dots$$
 (5 marks)

Question TWO (20 MARKS)

a) Given $\frac{2}{3\sqrt{3}-2\sqrt{2}} + \frac{1}{3\sqrt{3}+2\sqrt{2}} = a\sqrt{b+c\sqrt{d}}$ where a, b, c, d are constants. Determine the values a, b, c, d

(5 marks)

(4 marks)

b) Show that
$$\log_a b = \frac{1}{\log_b a}$$
, hence evaluate $\log_5 80$ (5 marks)

- c) Solve the following equations using the method indicated in brackets.
 - i) $2x^2 + 14x + 9 = 0$ (Completing the square) (5 marks)
 - ii) $2x^2 + x 12 = 0$ (Quadratic formula) (5 marks)

©Technical University of Mombasa

Question THREE (20 MARKS)

- a) Find the values of a and b if $ax^4 + bx^3 8x^2 + 6x 6$ has a remainder of 2x + 1 when divided by $x^2 - 1$ (8 marks)
- b) Show that $2x^3 + x^2 13x + 6$ is divisible by x 2, and find the other factors of the expression

(8 marks)

c) Given $a_n = f(n) = \frac{n-2}{3}$, Find the first five terms of the finite sequence (4 marks)

Question FOUR (20 MARKS)

- a) Draw the graph of $y = x^3 3x^2 + 5x 5$ for $-3 \le x \le 5$ and use your graph to solve:
 - i) $x^3 3x^2 + 5x 5 = 0$ (5 marks)
 - ii) $x^3 3x^2 + 2x 9 = 0$ (5 marks)
- b) Solve for x given that $\log_2 5(x) \log_4 2x = 3$ (8 marks) (2 marks)
- c) Find C(7, 3)

Question FIVE (20 MARKS)

- a) Find the sixth term in the expression $(2a + b)^9$ (3 marks)
- b) Show that $2^n \le 2^{n+1} \le 2^{n-1} 1$ (8 marks)
- c) Determine the modulus and argument of $\mathbb{Z} = 2 + 2\sqrt{3i}$ and express \mathbb{Z} in polar form (4 marks)
- d) Perform the indicated division leaving your answer as a complex number (5 marks)

$$\frac{1+\sqrt{-4}}{3-\sqrt{-9}}$$