

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS UNIVERSITY EXAMINATION FOR: DIPLOMA IN ELECTRICAL ENGINEERING ELECTRICAL POWER OPTION TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION YEAR III SEMESTER II AMA 2351: ENGINEERING MATHEMATICS VI END OF SEMESTER EXAMINATION SERIES: AUGUST 2019 TIME: 2HOURS DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student I Mathematical table, calculator

This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO

questions.

Do not write on the question paper.

Question One (Compulsory)

a) Determine the unit vector normal to the surface $\Phi(x, y, z) = 3x^3 + 2y^3 + 4xyz$ at a

b) Determine the Eigen values and corresponding Eigen vectors of the Matrix

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$
(9marks)

c) i) Evaluate
$$I = \iint xy(x+y)dxdy$$
 over the area between $y = x^2$ and $y = x$ (6marks)

ii) Evaluate the triple integral
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1-x^2-y^2} x dz dx dy$$
 (6marks)

d) Find the value of the constant p given that the three vectors

$$\underline{A} = \underline{i} - 2\underline{j} + p\underline{k}, \quad B = -2\underline{i} + 3\underline{j} - 4\underline{k}, \quad C = \underline{j} + 2\underline{k}, \text{ are coplanar}$$
 (4marks)

QUESTION TWO

a) Evaluate:-

i) $\int_{1}^{3} \int_{0}^{\ln y} dx dy$ (5marks) ii) $\int_{2}^{\frac{\pi}{2}} \int_{0}^{x} x \sin y dy dx$ (7marks)

b) Find the volume enclosed by the curve $x^2 + y^2 = 16$, and the planes z = 0 and

 $z = 5 - x \tag{8marks}$

(30marks)

(20marks)

QUESTION THREE

Evaluate :

a)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{y} y \cos x \, dx \, dy \qquad (4 \text{marks})$$

b) Use double integration to determine the area enclosed by the curve

$$y = x^2$$
 and the line $y = x$ (7marks)

c)
$$\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}} \text{ over the region for which: } x \ge 0, y \ge 0, z \ge 0$$

and
$$x^2 + y^2 + z^2 = 1$$
 (9marks)

QUESTION FOUR

a) Given that D is a square defined by $-1 \le x_1 \le 1$, $-1 \le x_2 \le 1$ and F₁ and F₂

defined on D by $F_1(x_1, x_2) = -x_2 e^{x_1}$ and $F_2(x_1, x_2) = x_1 e^{x_2}$, prove Greens

Theorem.

(b) Given
$$A = xyz\tilde{i} + (xy - 2yz)\tilde{j} + yz^2\tilde{k}$$
 and $\phi = 2x^2y - 2xyz + 3y^2z^2$.

Find at a point (2,1,2)

- i) Curl A
- ii) Div grad ϕ (8 marks)

(20marks)

(12marks)

QUESTION FIVE

(6marks)

a) Given that $A = \begin{bmatrix} 3 & 1 \\ 4 & 3 \end{bmatrix}$ and the characteristic polynomial.

 $f(\lambda) = \det[A - \lambda I]$, Solve the characteristics equation $f(\lambda) = 0$ and hence

Show that f(A) = 0, zero matrix. (8marks)

b) i) Show that
$$A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$
 is zero of $f(\lambda) = \lambda^2 - 2\lambda - 3$. Hence or otherwise,

find the eigen values of A and corresponding eigen vectors	(6marks)
--	----------

ii) Diagonalize the matrix b (i) above