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Instructions to Candidates
You should have the following for this examination

-Answer Booklet, examination pass and student | Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO

questions.

Do not write on the question paper.
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Question One (Compulsory)

a) Determine the unit vector normal to the surface ®(x,y,z) =3x> +2y> +4xyzat a

Point(1,0,-1)

b) Determine the Eigen values and corresponding Eigen vectors of the Matrix
31
A=
2 2
c) i) Evaluate/ = ”xy(x+y)dxdy over the area between y = x* and y=Xx
1 \/1—71—x2—y2
i) Evaluate the triple integralf j j xdzdxdy
0 K +y?
d) Find the value of the constant p given that the three vectors

A=i-2j+pk, B=-2i+3j—-4k, C=j+2k,arecoplanar

QUESTION TWO

a)  Evaluate:-

3ny

i [ [ dxdy

10

=
o—nly

jxsinydydx
0

b) Find the volume enclosed by the curve x* + y*> =16, and the planes z = 0 and

z=5-—x
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QUESTION THREE (20marks)

Evaluate :

y cos xdxdy (4marks)

Q
O NV [N
O ) <

b) Use double integration to determine the area enclosed by the curve

y =x”and the line y = x (7marks)

0 “‘j dxdydz over the region for which: x>0,y >0,z>0

/1_X2_yz_zz

and x*+y°+2°=1 (9marks)
QUESTION FOUR (20marks)
a) Given that D is a square defined by—-1<x, <1, —1<x,<1 and F1and F>

definedon D byF (X,,X,)= —thi‘x1 andF,(x,,x,) =x,e™ , prove Greens
Theorem. (12marks)
(b) Given A =xyzi +(xy —2yz)j+yz’k and ¢ =2x%y —2xyz+3y°z".
Find at a point (2,1,2)
i) Curl A

ii) Div grad ¢ (8 marks)
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QUESTION FIVE (20marks)

31
a) Given that A= [4 3} and the characteristic polynomial.

f(A)=det[A—AI], Solve the characteristics equation f(1)=0 and hence

Show that f(A)=0, zero matrix. (8marks)
1 4 5 )
b)i) Show that A= 11 is zero of f(1)=A1°—24—3. Hence or otherwise,

find the eigen values of A and corresponding eigen vectors (émarks)

ii) Diagonalize the matrix b (i) above (6marks)
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