

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION 2017/2018

BACHELOR OF SCIENCE (ELECTRICAL & ELECTRONIC ENGINEERING)

EEE 2306: ELECTRICAL MACHINES II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

Question ONE (Compulsory)

- a. Explain why transformer rating is given in kVA and not in kW. (3 marks)
- b. Using appropriate diagram(s) explain the working principle of single-phase induction motor

(10 marks)

c. A 100 kVA, 3-phase, 50 Hz transformer has a voltage ratio (line voltages) of 11/0.415 kV and is deltastar connected. The resistances per phase are: high voltage 40 Ω , low voltage 0.8 Ω and the iron loss is 2000 W. The power factor of the load is 0.6 lagging. Calculate the value of efficiency at half load

(9 marks)

(8 marks)

- d. The power input to a 415 V, 50 Hz, 4-pole, 3-phase induction motor running at 1450 rpm is 15 kW. The stator losses are 0.5 kW and the friction and windage losses total 1 kW. Calculate:
 - i. The slip
 - ii. The rotor copper loss
 - iii. Shaft output
 - iv. The efficiency

©Technical University of Mombasa

Question TWO

- a. Give the reasons that necessitate the need for connecting transformers in parallel. (6 marks)
- State **FOUR** conditions that must be fulfilled in order to connect three-phase transformers in parallel b.

(4 marks)

c. A load of 150 kVA at 0.866 power factor lagging is supplied by two 3-phase transformers of 100 kVA and 250 kVA capacity operating in parallel. The voltage transformation ratios of the two transformers are the same: 11,000 to 415 delta-star. If the equivalent secondary impedances are (0.01+j0.03) ohms and (0.028 + j0.05) ohms per phase respectively, calculate the load on each transformer.

(10 marks)

Question THREE

- a. List and explain three methods of controlling the speed of a slip-ring motor (4 marks)
- b. Figure Q3 shows six windings of a 3-phase transformer wound on the transformer core.
 - i. Complete the interconnections and properly label the terminals to realize a vector group-two (2).
 - ii. Using vector diagrams, prove that the connections in (i) realized Vector group-two (2) transformer

(6 marks)

- c. A 200 kVA, Y-Y 3-phase, 50 Hz, 11,000/415 V transformer has an iron loss of 1600 W. The maximum efficiency occurs at 0.75 full load. Determine the efficiency of the transformer at:
 - i. full-load and 0.8 power factor

ii. half-load and unity power factor

Question FOUR

- a. Draw an equivalent diagram of an induction motor and explain each parameter. (4 marks)
- b. Explain what you would experimentally do to determine the parameters of an induction motor
- c. A 3-phase induction motor is driving full-load torque which is independent of speed. If the line voltage drops to 95% of the rated value, find the increase in motor copper losses. (10 marks)

Question FIVE

- a. Calculate the percentage change in motor torque when the supply voltage to an induction motor is increases by 6%. (3 marks)
- b. Explain what happens to the motor if two terminals to:
 - i. The slip-rings are interchanged?
 - ii. The stator windings are interchanged
- c. Sketch and explain the circle diagram of an induction motor(4 marks)(7 marks)
- d. The star-connected rotor of a slip-ring induction motor has a standstill impedance of (0.4+j4) ohm per phase and the rheostat impedance per phase is 10 ohms. The motor has an induced emf of 100 V between slip-rings at standstill when connected to its normal supply voltage. Find rotor current:
 - i. At standstill with the rheostat in the circuit
 - ii. When the slip-rings are short-circuited and motor is running with a slip of 4%.

(6 marks)

(10 marks)

(6 marks)