

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION 2017/2018

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE

DEGREE OF BACHELOR OF SCIENCE (ELECTRICAL & ELECTRONIC ENGINEERING)

EEE 2305: DIGITAL ELECTRONICS I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of FIVE questions. Attempt **Question ONE** (**Compulsory**) and any other **TWO Questions Do not write on the question paper.**

Ouestion ONE

- a. Differentiate between synchronous and asynchronous sequential circuits (6 marks)
- b. De-Morganize the Boolean expression below and implement the simplified expression using a minimum number of NAND gates.

$$Y = \overline{(\overline{A \cdot B} + \overline{C}) \cdot (\overline{A} + \overline{B \cdot C})}$$
 (8 marks)

- c. With the aid of a block diagram, XOR implementation and truth table describe the operation of a full-adder. (8 marks)
- d. In a 4-stage ripple counter, the propagation delay of a Flip-flop is 50 ns. If the pulse width of the strobe is 30 ns, find the maximum frequency at which the counter operates reliably. (2 marks)
- e. Perform the following operations:
 - i. $3F_{16}$ $5C_{16}$ (using 2's complement)
 - ii. $36_{10} + 63_{10}$ (using Excess-3 code)
 - iii. 11111₂ –F.F₁₆ (using the Hexadecimal subtraction)

(6 marks)

Question TWO

a. Show that $A.(B \oplus C) = A.B \oplus A.C$

(5 marks)

b. Use a Karnaugh Map to simplify the following Boolean expression:

$$F(w, x, y, z) = \sum m(1,3,7,11,15)$$

that has the don't care conditions

$$d(w, x, y, z) = \sum m(0,2,5)$$
 (5 marks)

c. Show the states of a 4-bit SISO register for data input 1101 using a block diagram, waveforms and transition table. Assume the registers contain ones initially. Use positive-edge triggered D-flip-flops (10 marks)

Question THREE

a. Define the term race around as used in flip-flops.

(2 marks)

- b. In the flip-flop circuit of **Figure Q3.1** show that if:
 - i. $P_r = 0$ and $C_r = 1$, then Q = 1 (independent of S, R, and CK)
 - ii. $P_r = 1$ and $C_r = 0$, then Q = 0 (independent of S, R, and CK)
 - iii. $P_r = C_r = 1$, then it functions as a clocked SR flip-flop (10 marks)

Figure Q3.1

c. **Figure Q3.2** shows a positive edge-triggered D-type flip-flop. Verify its operation. (8 marks)

Figure Q3.2

Question FOUR

- a. Design (without minimizing), a logic circuit using NOR gates only with three input variables that will produce a 1 output when any two input variables are 1's. (6 marks)
- b. Design a J-K counter that endlessly goes through states 2, 4, 5, 7, 2, 4..... (14 marks)

Question FIVE

- a. Tyrone Shoelaces has invested a huge amount of money into the stock market and doesn't trust just anyone to give him buying and selling information. Before he will buy a certain stock, he must get input from three sources. His first source is Pain Webster, a famous stock broker. His second source is Meg A. Cash, a self-made millionaire in the stock market, and his third source is Madame LaZora, a world-famous psychic. After several months of receiving advice from all three, he has come to the following conclusions:
 - Buy if Pain and Meg both say yes and the psychic says no.
 - Buy if the psychic says yes.
 - Don't buy otherwise.

Construct a truth table and find the minimized Boolean function to implement the logic telling Tyrone when to buy. Implement the minimized Boolean function. (6 marks)

- a. i. Obtain the truth table for the logic circuit shown in Figure Q5
 - ii. Design the circuit in (i) using minimum number of NOR gates (14 marks)

Figure Q5