TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering \& Technology

DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING
 SPECIAL/SUPPLEMENTARY UNIVERSITY EXAMINATION 2017/2018
 THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 2302: ANALOGUE ELECTRONICS III
TIME: 2 HOURS
DATE: SEPTEMBER, 2018 SERIES

INSTRUCTIONS

This paper has five Questions.
Answer any THREE Questions.
Question ONE
(a) Consider an ideal operational amplifier.
(i) Name TWO primary assumptions used in the analysis of its circuits.
(ii) Name any TWO additional implicit assumptions or characteristics.
(4 marks)
(b) (i) Draw the equivalent circuit of a low frequency operational amplifier circuit as a voltage controlled voltage source.
(ii) Using a suitable circuit diagram, derive an expression for the overall gain of the ideal inverting configuration amplifier.
(iii) Design an inverting amplifier to have an input resistance of $20 \mathrm{k} \Omega$ and a gain of 40 dB .
(11 $1 / 2$ marks)
(c) Consider the amplifier given in Fig. Q1(c). The passive components are $\mathrm{R}_{1}=3 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=43 \mathrm{k} \Omega$. If the input signal $\mathrm{V}_{\mathrm{s}}=+0.1 \mathrm{~V}$. Calculate:
(i) Voltage gain, A_{v}
(ii) Output voltage, V_{o}
(iii) Output current, i_{o}

Assume that the op amp is deal.

Fig. Q1(c)

Question TWO

(a) State any TWO advantages of an instrumentation amplifier over a differential amplifier.
(b) An instrumentation amplifier is implemented using the 3-opamp configuration of Fig. Q2(b). The inputs are:
$\mathrm{V}_{2}=2080 \mathrm{mV}$ and $\mathrm{V}_{1}=2100 \mathrm{mV}$
The passive components are:
$\mathrm{R}_{1}=25 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{x}}=50 \mathrm{k} \Omega, \mathrm{R}_{1 \mathrm{~A}}=\mathrm{R}_{2 \mathrm{~A}}=25 \mathrm{k} \Omega, \mathrm{R}_{2 \mathrm{~A}}=\mathrm{R}_{2 \mathrm{~B}}=50 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{G}}=400 \Omega$
Assuming that the opamps are ideal, determine the following:
(i) The voltage V_{01} and V_{02}
(ii) The current I_{G} through R_{G}
(iii) The current J_{R} through $\mathrm{R}_{2 \mathrm{~B}}$
(iv) The output voltage V_{o}

Fig. Q2(b)
(9 marks)
(c) In the circuit given in Fig. Q2(c), the opamp has the following parameters:
$\mathrm{V}_{10}=4 \mathrm{mV}, \mathrm{I}_{\mathrm{B}}=180 \mathrm{nA}$ and $\mathrm{I}_{10}=40 \mathrm{nA}$
Where V_{10} is the input offset voltage, I_{B} is the bias current, and I_{10} is the input offset current.

Determine the largest error or "worst case" output voltage V_{o} due to the input offset effects. The input $\mathrm{V}_{1}=20 \mathrm{mV}$.

Fig.Q2(c)

Question THREE

(a) (i) Describe an oscillator.
(ii) Discuss briefly the classification of diverse oscillators.
(iii) Using a suitable block diagram, derive the condition for oscillation.
(6 marks)
(b) With the aid of a diagram, briefly describe the principles of operation of mono-stable multivibrator.
(8 marks)
(c) Consider the Wien bridge oscillator circuit given in Fig. Q3(c).
(i) Determine the frequency of oscillation.
(ii) Calculate the value of R_{1} necessary to maintain oscillation.

Fig. Q3(c)
(6 marks)

Question FOUR

(a) (i) With aid of a suitable diagram explain the principles of operation of a precision rectifier.
(ii) State any THREE limitations of a precision rectifier.

(8 marks)

(b) A differential amplifier with a nominal gain of 10 is illustrated in Fig. Q4(b) tolerances in the resistors result in the actual values shown. Determine:
(i) The output voltage Vo
(ii) The common mode gain
(iii) The Common Mode Rejection Ratio (CMRR)
(iv) The differential input impedance.

Fig. Q4(b)
(9 marks)
(c) State the THREE sources of unwanted offset voltages in an operational amplifier.
(3 marks)

Question FIVE

(a) The operational amplifier given in Fig. Q5(a) is ideal. If the input voltages are: $V_{1}=60 \mathrm{mV}, \quad V_{2}=48 \mathrm{mV}$ and $V_{3}=(24 \cos w t) m V$ and the resistances in the circuit are, $R_{1}=12 k \Omega, \quad R_{2}=16 k \Omega, R_{3}=8 k \Omega, R_{f}=108 k \Omega$

Determine the output voltage V_{o}.
(8 marks)

Fig. Q5(a)
(b) Design an amplifier to carry out the following operation:

$$
\begin{equation*}
f=3 x+4 y-5 z \tag{7marks}
\end{equation*}
$$

(c) Using appropriate diagrams derive an expression for the common-mode rejection ratio for an op-amp.

