TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR: DIPLOMA IN ELECTRICAL ENGINEERING ELECTRICAL POWER OPTION TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION

YEAR II SEMESTER II
AMA 2251:ENGINEERING MATHEMATICS IV
END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019
TIME: 2HOURS
DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student I Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION ONE (compulsory)

(a) Find the
i) Laplace transform of $t \cos a t$
ii) Inverse Laplace transform of $f(s)=\frac{2 s-1}{(S+1)\left(s^{2}+7\right)}$
b Use Maclaurin's Theorem to determine the power series of the function

$$
f(x)=2 x^{3}-e^{-3 x} \text { as far as the term in } x^{4}
$$

c) The circuit in fig. 1 is dead prior to switch closure at $t=0$

Solve for the charge $q(t)$ in the circuit

d) A student finds that the average number of amoeba in a 10 ml pond of water from a particular pond is four. Assuming that the number of amoeba follows Poisson distribution, find
i) There exactly five amoebas
ii) There are no Amoebas
iii) There are fewer than three amoebas
a) Find the inverse Laplace transform of: $\frac{4 s^{2}-5 s+6}{(s+1)\left(s^{2}+4\right)}$
c) Use Laplace transform to determine the current $i_{1}(t)$ in the network of fig .1 assuming that the circuit is dead at $\mathrm{t}=0$

(12marks.

QUESTION THREE

a) A continuous random variable X has a probability density function defined by
$f(x)= \begin{cases}c(1-x)^{2}, & 1<x<4 \\ 0, & \text { elswhere }\end{cases}$

Determine the
i) Value of the constant c
ii) Mean
iii) $\quad P(1.5 \leq x \leq 2.5)$
b) Table! Shows the marks scored by students in a mathematics examination

marks	$12-14$	$15-17$	$18-20$	$21-23$	$24-26$	$27-29$
No of students	2	6	a	8	4	1

Given the mean is 19.9

Determine i) the value of a
a) i) Use Maclaurins theorem to expand $\ln (1+x) n$ ascending powers of x as far as the term x^{5}
ii) hence evaluate the integral $\int_{0}^{1} \frac{\ln (1+x)}{x} d x$ correct to 4 d.p
b) By expanding $\sin \left(\frac{\pi}{6}+h\right)$ in Taylor's series as far as the term h^{4} determine the value of $\sin 32^{\circ}$ correct to six d.p

QUESTION FIVE

(20MARKS)
a) Find from first principle the Laplace transform of $t e^{-4 t}$
c) A d.c consist of an e.m.f of 20 V in series with a resistance of 20Ω and an Inductance of 2 H . use Laplace transforms method to find an expression for $i(t)$ in the circuit assuming thatthe current is zero prior to switch closure at $\mathrm{t}=0$

