

TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS UNIVERSITY EXAMINATION FOR: DIPLOMA IN ELECTRICAL ENGINEERING ELECTRICAL POWER OPTION TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION

YEAR II SEMESTER II AMA 2251: ENGINEERING MATHEMATICS IV END OF SEMESTER EXAMINATION SERIES: AUGUST 2019 TIME: 2HOURS DATE: AUGUST 2019

<u>Instructions to Candidates</u> You should have the following for this examination

-Answer Booklet, examination pass and student I Mathematical table, calculator

This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO

questions.

Do not write on the question paper.

(8marks)

QUESTION ONE (compulsory)

(a) Find the

i) Laplace transform of t cos at (4marks)

ii) Inverse Laplace transform of
$$f(s) = \frac{2s-1}{(s+1)(s^2+7)}$$
 (5marks)

b Use Maclaurin's Theorem to determine the power series of the function

$$f(x) = 2x^3 - e^{-3x}$$
 as far as the term in x^4 (7marks)

c) The circuit in fig. 1 is dead prior to switch closure at t=0

Solve for the charge q (t) in the circuit

- A student finds that the average number of amoeba in a 10ml pond of water
 from a particular pond is four. Assuming that the number of amoeba follows
 Poisson distribution, find
 - i) There exactly five amoebas
 - ii) There are no Amoebas
 - iii) There are fewer than three amoebas (6marks)

QUESTION TWO

(20MARKS)

Page 2 of 4

- a) Find the inverse Laplace transform of: $\frac{4s^2 5s + 6}{(s+1)(s^2 + 4)}$ (8marks)
 - c) Use Laplace transform to determine the current $i_1(t)$ in the network of fig .1

assuming that the circuit is dead at t=0

(12marks.

QUESTION THREE

a) A continuous random variable X has a probability density function defined by

$$f(x) = \begin{cases} c(1-x)^2, & 1 < x < 4 \\ 0, & elswhere \end{cases}$$

Determine the

- i) Value of the constant c
- ii) Mean

iii)
$$P(1.5 \le x \le 2.5)$$

b) Table! Shows the marks scored by students in a mathematics examination

marks	12-14	15-17	18-20	21-23	24-26	27-29
No of students	2	6	а	8	4	1

Given the mean is 19.9

Determine i) the value of a

(20MARKS)

(8marks)

standard	deviation
----------	-----------

QUESTION FOUR

a) i) Use Maclaurins theorem to expand ln(1+x) n ascending powers of x

as far as the term x^5

hence evaluate the integral $\int_{0}^{1} \frac{\ln(1+x)}{x} dx$ correct to 4d.p ii) (11marks)

By expanding $sin(\frac{\pi}{6} + h)$ in Taylor's series as far as the term h^4 determine b)

QUESTION FIVE (20MARKS)

a)	Find from first principle the Laplace transform of te^{-4t}	(6marks)
b)	Find the Laplace transform of 6sin2t cos3t	(5marks)
c)	A d.c consist of an e.m.f of 20V in series with a resistance of 20 Ω and an	
	Inductance of 2 H. use Laplace transforms method to find an expression for	

i(t) in the circuit assuming that the current is zero prior to switch closure at t=0 (9marks)

(20MARKS)