

TECHNICAL UNIVERSITY

OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND CIVIL ENGINEERING YEAR III SEMESTER II AMA 2251: ENGINEERING MATHEMATICS IV SPECIAL/ SUPPLIMENTARY EXAMINATIONS **SERIES:** SEPTEMBER 2018 **TIME:** 2HOURS DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID Mathematical table, calculator This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions **Do not write on the question paper.**

Question one (compulsory) (30MKS)

- a)
- i) Determine $L\{e^{4t}\cos 2t\}$ using Laplace transform tables (3 marks)
- ii) Determine the Laplace transform of f(t) = 2t from first principles
- iii) Given that y = 1 when $x = 2\frac{1}{6}$, determine the particular solution of $(y^2 + 4)dy = 3ydx$ (5 Marks)

iv) Use the integrating factor to solve $\frac{dy}{dx} - \frac{2y}{x} = 3x^3$ given the boundary conditions y = 1 when x=3 (6 Marks)

v) Determine
$$L^{-1}\left\{\frac{4s-3}{s^2-4s-5}\right\}$$
 (4 marks)

Question Two (20 Marks)

a) Given the function f(x) = x, $0 < x < 2\pi$, determine the Fourier series representing the function f(x)

(10 Marks)

b) Determine the Fourier series expansion of the periodic function of period 1, given the function

$$f(x) = \begin{cases} -1 & for \quad -\pi < x < \frac{-\pi}{2} \\ 0 & for \quad \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 1 & for \quad \frac{\pi}{2} < x < \pi \end{cases}$$
(10 Marks)

Question Three (20 Marks)

a) $\frac{dy}{dx} + 5y = \frac{7}{2}$ and y = 0 and x = 0. Use Laplace transforms to the general solution

10 marks)

b) Using Laplace transforms solve the following second order differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \sin x, \text{ where } y(0) = 0, y'(0) = 1$$
(10 Marks)

Question Four (20 Marks)

- a) Given that $7x(x-y)dy = 2(x^2 + 6xy 5y^2)dx$ is homogeneous in x and y, solve the differential equation taking x = 1 when y = 0 (12 Marks)
- b) The charge q in an electric circuit at time t satisfies the equation $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E$, where L, R, C and E are constants. Solve the equation given L = 2H, $C = 200 \times 10^{-6} F$ and E = 250V when $R = 200\Omega$ (8 Marks)

Question Five (20 Marks)

a) Show the following

$$e^{3t} = \frac{1}{s-3}$$
, using the definition of Laplace transforms (3 marks)
b) Determine $L^{-1}\left\{\frac{7s+13}{s(s^2+4s+13)}\right\}$ (9 marks)

c) Determine the general solution of $9\frac{d^2y}{dx^2} - 24\frac{dy}{dx} + 16y = 0$, then its particular solution given

that
$$x = 0$$
, $y = \frac{dy}{dx} = 3$ (8 Marks)

TABLE OF SOME LAPLACE TRANSFORMS					
	Function.	Transform			
	F(t)	$\int_{0}^{\infty} e^{-st} f(t) dt$			
1.	1	1/s			
2.	e^{at}	1/s-a			
3.	sin at	$a/s^2 + a^2$			
4.	cos at	$s/s^2 + a^2$			
5.	t	$1/s^{2}$			
6.	t^n (<i>n</i> a positive integer)	$n!/s^{n+1}$			
7.	sinh at	$a/s^2 - a^2$			
8.	cosh at	s/s^2-a^2			
9.	$t\sin at$	$2as/(s^2+a^2)^2$			
9(a)	$t\cos at$	$s^2 - a^2/(s^2 + a^2)^2$			
10.	$\sin at - at \cos at$	$2a^3/(s^2+a^2)^2$			
11.	$e^{-at}t^n$	$n!/(s+a)^{n+1}$			
12.	$e^{-bt}\cos at$	$(s+b)/[(s+b)^2+a^2]$			
13.	$e^{-bt}\sin at$	$a/\left[(s+b)^2+a^2\right]$			
14.	$e^{-bt}\cosh at$	$(s+b)/[(s+b)^2-a^2]$			
15.	$e^{-bt}\sinh at$	$a/\left[(s+b)^2-a^2\right]$			

	Some Theorems used in Laplace Transforms
1	If $f(s) = \ell \{F(t)\}$ then $f(s+a) = \ell \{e^{-at}F(t)\}$
2	$\ell\left\{\frac{dx}{dt}\right\} = s\overline{x} - x_{\circ}$
$\ell \left\{ \cdot \right\}$	$\left. \frac{d^2 x}{dt^2} \right\} = s^2 \overline{x} - s x_\circ - x_1$

Table of Laplace Transforms								
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}{f(t)}$		$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \Omega\{f(t)\}$			
1,	1	1	2.	e"	$\frac{1}{s-a}$			
3.	$t^{*}, n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4,	$t^{p},p\geq l$	$\frac{\Gamma(p+1)}{s^{p+1}}$			
5.	л.	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{-\frac{1}{2}}, n=1,2,3,$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1) \sqrt{\pi}}{2^{n} s^{n+\frac{1}{2}}}$			
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$			
9.	$t \sin(at)$	$\frac{2as}{\left(s^2 + a^2\right)^2}$	10,	$t\cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$			
11,	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2 + a^2\right)^2}$	12,	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2 + a^2\right)^2}$			
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^2-a^2)}{(s^2+a^2)^2}$	14,	$\cos(at) + at\sin(at)$	$\frac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}$			
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$			
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$			
19.	$e^{s}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$\mathbf{e}^{u}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$			
21,	$\mathbf{e}^{a}\sinh\left(bt\right)$	$\frac{b}{(s-a)^2 - b^2}$	22.	$\mathbf{e}^{u}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$			
23.	t'e", n=1,2,3,	$\frac{n!}{(s-a)^{s+1}}$	24,	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$			
25.	$u_{c}(t) = u(t - c)$ Heaviside Function	<u>e***</u> 5	26.	$\delta(t-c)$ Dirac Delta Function	e			
27.	$u_{\epsilon}(t)f(t-c)$	e "F(s)	28.	$u_{\epsilon}(t)g(t)$	$e^{-\omega} \mathcal{L}\{g(t+c)\}$			
29.	$e^{t}f(t)$	F(s-c)	30.	$t^{*}f(t), n = 1, 2, 3,$	$(-1)^{\circ} F^{(a)}(s)$			
31.	$\frac{1}{t}f(t)$	$\int_{-\infty}^{\infty} F(u) du$	32.	$\int_{0}^{t} f(v) dv$	$\frac{F(s)}{s}$			
33.	$\int_{t}^{t} f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	$f(t\!+\!T)\!-\!f(t)$	$\frac{\int_0^T e^{-t} f(t) dt}{1 - e^{-t^2}}$			
35.	f'(t)	sF(s) = f(0)	36.	$f^{*}(t)$	$s^{2}F(s) - sf'(0) - f'(0)$			
37.	$f^{(a)}(t)$	$s^*F(s) = s$	$f^{*}f($	$0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}$	$(0) = f^{(n-1)}(0)$			