

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR: DIPLOMA IN ELECTRICAL ENGINEERING** ELECTRICAL POWER OPTION TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION

YEAR II SEMESTER II AMA 2251: ENGINEERING MATHEMATICS IV END OF SEMESTER EXAMINATION SERIES: AUGUST 2019 TIME: 2HOURS DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student I Mathematical table, calculator

This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION ONE (Compulsory)

(30MARKS)

(20MARKS)

(a) Find the Laplace transform of

i)
$$f(t) = \begin{cases} \sin at, t \ge 0 \\ 0, t < 0 \end{cases}$$
 from the definition of Laplace transform (6marks)

ii)
$$g(t) = \begin{cases} t \sin at, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
 by partially differentiating $G(s)$ where $G(s)$ is

the Laplace transform of f(t) (4marks)

b) i) show that
$$\lim_{t \to 0} \frac{e^{-t} - e^{-2t}}{t} = 1$$
 (4marks)

ii) Hence find the Laplace transform of $f(t) = \frac{e^{-t} - e^{-2t}}{t}$ (4marks)

c) Use Taylor's series to expand $3x^3 + 7x^2 - x + 5$ in ascending powers of (x-1)

as far as the term in
$$(x-1)^3$$
. Hence, determine $f\left(\frac{9}{10}\right)$ correct to three d.p (8marks)

d) If 10% of bolts produced by a machine are defective, determine the probability that

out of 10 bolts produced at random

- i) One
- ii) None
- iii) at most two bolts will be defective (4marks)

QUESTION TWO

- a) Find the Laplace transform of $f(s) = \frac{S}{(S^2 + 4)(S + 3)}$ (7marks)
- b) The circuit in fig 1 is dead prior to the closure of the switch at t=0, using

Laplace transforms, determine

- i) The charge q(t) in the circuit
- ii) the current i(t) for $t \ge 0$

(13marks)

QUESTION THREE

(20MARKS)

a) 120 students pursuing a course in electrical engineering were examined and their

result summarized as shown below

Marks obtained	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99
No. of students	7	12	14	28	25	14	12	8

Using an assumed mean of 55determinethe

- i) Mean mark
- ii) Standard Deviation
- iii) Pearson's coefficient of Skewness

(13marks)

b) Table 2 show the percentage mark obtained by ten students in mathematics and physics

Mathematics	75	38	96	27	74	85	90	63	66	42
Physics	85	51	92	60	64	68	88	63	65	45

i) Determine product correlation coefficient

ii) Hence comment on the result

QUESTION FOUR

Page **3** of **4**

(20MARKS)

(7marks)

a) Find the first three non -zero terms in the Maclaurian expansion of $f(x) = \sin x$

and hence evaluate $\int_{0}^{1} \frac{\sin x}{x} dx$ correct to three decimal places (10marks)

b) i) Use Taylor's series to expand $\cos(\frac{\pi}{3} + h)$ as far as the term h^4

ii) Hence determine the value of cos63° correct to 4d.p (10marks)

QUESTION FIVE

a) Find the

i) Laplace transform of $t^2 \cos t$ (5marks)

(20MARKS)

ii) Inverse Laplace transform of
$$f(s) = \frac{s^2 + 2s - 3}{s(s-3)(s+2)}$$
 (6marks)

b) Use Laplace Transform method to solve the differential equation

$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = e^{2t}$$
 Given that $t = o, x = 0, X' = 0$ (9marks)