

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** DIPLOMA ELECTRICAL ENGINEERING ELECTRICAL POWER OPTION, TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION YEAR II SEMESTER I AMA 2250: ENGINEERING MATHEMATICS III SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER 2018 TIME: 2HOURS DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student I Mathematical table, calculator

This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO

questions.

Do not write on the question paper.

QUESTION ONE (compulsory)

30marks

(a) Show that the differential equation

$$3x^2y^2dx + 2x^3ydy - 2xdx = 0$$
 is exact and hence solve it (5marks)

(b) The deflection of a galvanometer is governed by he equation.

$$\frac{d^2\theta}{dt^2} + 2\frac{d\theta}{dt} + \theta = 4$$
 Find the deflection θ , at any time t (6marks)

(c) (i) Using the circuit diagram in figure 1, find the matrix of the system of

Simultaneous equations formed by the current $i_1 i_2$ and i_3 . Given that $R_1 = R_2 = R_3 = R_4 = 1$, $E_1 = 3$, $E_2 = 2$, $E_3 = 1$,

- (ii) Hence determine the current $i_1 i_2$ and i_3 using Crammers. (7marks)
- (d) The current I flowing in a circuit where E = 20V is the applied voltage, L = 2H is the

Inductance and $R = 150\Omega$ the resistance.

- i) Obtain the differential equation governing the circuit as a function of the current i
- ii) Use integrating factor to obtain the current I given that when t = 0, i = 0. (6marks

e) Given that
$$V = e^{3x+4y} \cos 5z$$
. Show that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial Z^2} = 0$ (6marks)

QUESTION TWO

a) Given that
$$u = \frac{x - y}{x + y}$$
 show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{4u}{(x + y)^2}$ (6marks)
b) Find the rate of change of volume of a cone at an instant when its base is
6cm and height is 8cm. If the radius decrease at the rate of 0.6cm/sec and
height decrease at the rate of 0.2cm/sec (5marks)
c) Locate the stationary points of the function $f(x, y) = x^2 - 3y^2 + 2xy - 4x + 8y$
and state their nature (9marks)
QUESTION THREE (20mark)
a) Given $A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -1 & 2 \\ 1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 1 \\ 3 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ Determine $C = A^2 - 4B$ (6marks)
b) Solve the equation $\begin{vmatrix} x & 3 & 2 \\ 1 & 1 & x \\ x & 1 & 2 \end{vmatrix} = 0$ (3marks)

4*u*

Three e.m.f in a three loop d.c circuit satisfy the equations c)

$$3E_1 + 2E_2 - E_3 = 12$$

$$-2E_1 + E_2 - 2E_3 = -12$$

$$E_1 - 2E_2 + 3E_3 = 10$$

Use inverse matrix method to determine the values of e.m.f (11marks)
QUESTION FOUR (20marks)

a) Solve the differential equations

i)
$$x^2 \frac{dy}{dx} = xy + x^2 + y^2$$
 (6marks)

ii)
$$\frac{dy}{dx} + y \cot x = \cos x$$
 (6marks)

b) The response of a linear system is characterized by the differential equation

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^{-t}$$
 Given that $t = 0, x = 0$ and $\frac{dx}{dt} = 1$. Use D-operator method

to solve the differential equation

QUESTION FIVE

(a) Using the circuit diagram in figure 2.

E= 4cos20t

L=10mH

- Form a differential equation in terms of charge q, satisfying the circuit diagram hence.
- ii) Solve the differential equation formed to find the charge q and the current

i given that when t = 0, q = 0 when i = 0 (12marks)

Fig 2.

twist L is the length. Use partial derivatives to find the percentage change in G where R is increased by 2%, θ decreased by 5% and L increased by 3%. (8marks)

(20marks)

(8marks)