TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR: DIPLOMA ELECTRICAL ENGINEERING ELECTRICAL POWER OPTION, TELECOMMUNICATION OPTION INSTRUMENTATION AND CONTROL OPTION
YEAR II SEMESTER I
AMA 2250: ENGINEERING MATHEMATICS III SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: SEPTEMBER 2018
TIME: 2HOURS
DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student I Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.
(a) Show that the differential equation

$$
3 x^{2} y^{2} d x+2 x^{3} y d y-2 x d x=0 \text { is exact and hence solve it }
$$

(b) The deflection of a galvanometer is governed by he equation.

$$
\frac{d^{2} \theta}{d t^{2}}+2 \frac{d \theta}{d t}+\theta=4 \quad \text { Find the deflection } \theta, \text { at any time } \mathrm{t}
$$

(c) (i) Using the circuit diagram in figure 1, find the matrix of the system of Simultaneous equations formed by the current $\mathrm{i}_{1} \mathrm{i}_{2}$ and i_{3}. Given that $R_{1}=R_{2}=R_{3}=R_{4}=1, E_{1}=3, E_{2}=2, E_{3}=1$,

(ii) Hence determine the current $i_{1} i_{2}$ and i_{3} using Crammers.
(d) The current I flowing in a circuit where $E=20 \mathrm{~V}$ is the applied voltage, $L=2 \mathrm{H}$ is the Inductance and $R=150 \Omega$ the resistance.
i) Obtain the differential equation governing the circuit as a function of the current i
ii) Use integrating factor to obtain the current I given that when $t=0, i=0$.
(6marks
e) Given that $V=e^{3 x+4 y} \cos 5 z$. Show that $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$

QUESTION TWO

a) Given that $u=\frac{x-y}{x+y}$ show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{4 u}{(x+y)^{2}}$
b) Find the rate of change of volume of a cone at an instant when its base is

6 cm and height is 8 cm . If the radius decrease at the rate of $0.6 \mathrm{~cm} / \mathrm{sec}$ and height decrease at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$
c) Locate the stationary points of the function $f(x, y)=x^{2}-3 y^{2}+2 x y-4 x+8 y$ and state their nature

QUESTION THREE

(20mark)
a) Given $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -1 & 2 \\ 1 & 3 & 2\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 3 & -1 & 2 \\ 1 & 2 & 1\end{array}\right]$ Determine $C=A^{2}-4 B$
c) Three e.m.f in a three loop d.c circuit satisfy the equations

$$
\begin{aligned}
& 3 E_{1}+2 E_{2}-E_{3}=12 \\
& -2 E_{1}+E_{2}-2 E_{3}=-12 \\
& E_{1}-2 E_{2}+3 E_{3}=10
\end{aligned}
$$

Use inverse matrix method to determine the values of e.m.f
a) Solve the differential equations

$$
\begin{equation*}
\text { i) } \quad x^{2} \frac{d y}{d x}=x y+x^{2}+y^{2} \tag{6marks}
\end{equation*}
$$

ii) $\frac{d y}{d x}+y \cot x=\cos x$
b) The response of a linear system is characterized by the differential equation
$\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{-t}$ Given that $t=0, x=0$ and $\frac{d x}{d t}=1$. Use D-operator method to solve the differential equation

QUESTION FIVE

(a) Using the circuit diagram in figure 2.
i) Form a differential equation in terms of charge q, satisfying the circuit diagram hence.
ii) Solve the differential equation formed to find the charge q and the current
i given that when $t=0, q=0$ when $i=0$
(12marks)

Fig 2.
b) The module of rigidity G is given by: $\mathrm{G}=\frac{R^{4} \theta}{L}$ where R is the radius θ is the angle twist L is the length. Use partial derivatives to find the percentage change in G where R is increased by $2 \%, \theta$ decreased by 5% and L increased by 3%.

