

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

Department Of Building and Civil Engineering

UNIVERSITY EXAMINATION FOR:

Diploma in Building and Civil Engineering (DBCE Y2 S1)

AMA 2250 ENGINEERING MATHEMATICS III

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass, scientific calculator, student ID and no mobile phones.* This paper consists of five questions. Attempt question one compulsory and any other two questions **Do not write on the question paper.**

Question ONE

- (a) The curve $y=ach_{a}^{\frac{x}{a}}$ revolves around the x-axis. Find the volume generated between the ordinates at x=0 and x=a (5mks)
- (b) Find I by either putting x=ashz or integrating by parts $I=\int \sqrt{a^2 + x^2} dx$ (6mks)
- (c) Use the trapezium rule to estimate the area under the curve $y=\frac{1}{x}$ from x=1 to x=2 using six ordinates. Compare it by integration method. (6mks)

(d) Evaluate the following

i.
$$\int_0^{\pi/2} (\sin x - \cos x) dx$$
 (4mks)

ii.
$$I=\int 9x^3 + 11x^2 - x - 3$$
 dx, given that when x=1 I=2 (4mks)

(e) Find the volume generated when the plane figure bounded by y=5cos2x, the x-axis And ordinates at x=0 and $x=\frac{\pi}{4}^{\pi}$ rotates about the x-axis through a complete revolution (5mks)

Question TWO(a) Evaluate $\int_{0.2}^{1.0} \sqrt{1-x^3} dx$ using 8 intervals by Simpsons rule(10mks)

(b) Integrate by substitution if $t=\tan \frac{x}{2}$ then determine

i.	Sin x	(2mks)
ii.	Cos x	(2mks)
iii.	dx	(2mks)
iv.	$\int \frac{1}{1+\sin x - \cos x} dx$	(4mks)

Question THREE

(a)	Find	
i.	Tanh ⁻¹ in log form and hence	(4mks)
ii.	Tanh ⁻¹ 0.5	(3mks)

(b) Find

i.	$\int \frac{1}{\sqrt{(1-x^2)}} dx$	by letting u=sin u	(4mks)
----	------------------------------------	--------------------	--------

ii.
$$\int \frac{2x-1}{(x+1)^2} dx$$
 by partial fractions (5mks)
iii. $\int \frac{dx}{(3x+2)^4}$ by substitution (4mks)

Question FOUR

(a) Given that area of the surface generated when the arc of the curve y=f(x) between $x=x_1$ and x_2 , rotates about x-axis through a complete revolution is given by $A=\int_{X_1}^{X_2} 2\pi y \sqrt{1+(\frac{dy}{dx})^2} \, dx$, find the area generated when the arc of the parabola $y^2=8x$ between x=0 and x=2 rotates about the x-axis

(8mks)

- (b) A trench is to be dug in the form of a prismoid. The bottom is to be a rectangle 20.0m long by 14.0m wide. The top is also a rectangle 30.0m by 22.0m wide. If the depth of the trench is to be 10.0m. Find the volume of earth to be removed.
 (8mks)
- (c) Use the standard integral that $\int \frac{1}{t^2 + A^2} dt = \frac{1}{A} tan^{-1} (\frac{Z}{A}) + C$ to determine $\int \frac{1}{x^2 + 10x + 30} dx$ (4mks)

Question FIVE

(a) By the use of inverse hyperbolic function expressed in logarithm, evaluate $\int_2^3 \cosh^{-1} x \, dx$ (5mks)

(b) Find the moment of inertia (I) about the axis AB for the rectangular plate shown below

(ii).verify by integration that the area of the triangle formed by the line y=2x,

the ordinates x=0 and x=6 and the x-axis is 36 square units (3mks)