TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied and Health Sciences
 Department of Environment \& Health Sciences
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL LABORATORY
 DIPLOMA IN COMMUNITY HEALTH AND HIV MANAGEMENT
 AMA 2201 : BIOSTATISTICS
 END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019
TIME: 2 HOURS

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

QUESTIONS ONE

a) The data was collected during an experiment regarding a certain variable.

12	16	8	20	70	1000	6	17	14

I. Explain the best measure of average for this data. [3mks]
I. Calculate the best measure of average of the data [3mks]
b) The data below relates two variable x and y
i. Calculate the correlation coefficient [6 mks]
ii. Calculate the regression of y on x [6 mks]
iii. Use the regression equation to estimate y at $x=5$ [3 mks]

X	1	2	3	4	6
Y	4	6	8	11	14

c)
d) A random variable $X \sim N(40,6)$, calculate
i. $\quad P(x<30) \quad[4 \mathrm{mks}]$
ii. $P(28<x<40) \quad[4 \mathrm{mks}]$

QUESTION TWO

e) In a sample of 100 patients aged over 80 years, the mean pressure is 138 with a variance of 625 estimate the 95% confidence limits
f) The mean calling amount by university students is estimated at Sh .20 a day. A sample of 16 students from one university department had a mean of calling amount of sh. 18 with a standard deviation sh.8. Can it be concluded that the sample calling time was less than the university average at 95% confidence interval.
g) The probability of a machine break down is 0.1 . In a sample of 4 similar machines, calculate
I. The mean and variance [2mks]
II. the a probability distribution [5mks]

QUESTION THREE

The data below relates two variable x and y
iv. Calculate the correlation coefficient [6mks]
v. Calculate the regression of y on x [6 mks]
vi. Use the regression equation to estimate y at $x=5$ [3mks]

X	2	6	8	7	9
Y	5	9	12	11	14

QUESTION FOUR

The data in the table below shows the scores of students in the biostatistics class.
Required
a) the mean and standard deviation [8mks]
b) the median and mode of the following data [7mks]

scores	$0-10$	$10-20$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	5	7	10	10	6	4	2	1

QUESTION FOUR

i. A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 on the test. The six students get scores of $62,92,75,68,83$, and 95 . The professor wanted to test if the mean is different from 70,

Required

ii. The mean and standard deviation [5mks]
iii. The standard error of the mean [3mks]
iv. State the null and alternative hypotheses and what did the professor conclude? [7mks]

