TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN QUANTITY SURVEY

AMA 2151 ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST 2019

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

- 1. You should have the following for this examination
 - Answer Booklet
 - Scientific Calculator. Programmable calculators are prohibited.
- 2. This paper consists of FIVE questions. Answer ANY THREE questions
- 3. Maximum marks for each part of a question are as shown
- 4. Use neat, large and labeled diagrams where required
- 5. Each new question to begin on a new page

QUESTION ONE

- i. Differentiate from first principle $f(x) = x^2$ and determine the value of the gradient of the curve at x = 2. (6 marks)
- ii. Differentiate, with respect to x, $y = 5 x^4 + 4x \frac{1}{x^2} + \frac{1}{\sqrt{x}}$ (6 marks)
- iii. Find the gradient of the curve $y = 3x^4 2x^2 + 5x 2$ at the points (0, -2) and (1, 4). (4 marks)

(4 marks)

iv. Find the derivative of $y = \sec 3x$.

QUESTION TWO

- i. The length l metres of a certain metal rod at temperature θ° C is given by $l = 1 + 0.00005\theta + 0.000004\theta^2$. Determine the rate of change of length in mm/°C, when the temperature is:
 - (a) 100° C (b) 450° C. (6 marks)
- ii. The distance x metres moved by a car in a time t seconds is given by $x = 3t^3 2t^2 + 4t 1$. Determine the velocity and acceleration when;
 - (a) t =0 and (b) t =1.5s. (6 marks)
- iii. Find the coordinates of the maximum and minimum values of the curve $y = x^3 3x + 5$. (4 marks)
- iv. Differentiate $y = e^{\cos 2x} + \ln(\sin 2x)$. (4 marks)

QUESTION THREE

i. Determine the equations of the tangent and normal to the curve $y = \frac{x^3}{5}$ at the point $(-1, -\frac{1}{5})$. (6 marks) ii. Determine the equation of the tangent drawn to the ellipse x = 3 cos θ , y = 2 sin θ at θ $= \frac{\pi}{6}$. (4 marks)

iii. Differentiate
$$y = \frac{x^3 \ln 2x}{e^x \sin x}$$
. (6 marks)

iv. A rectangular block of metal with a square cross-section has a total surface area of 250 cm². Determine the maximum volume of the block of metal. (4 marks)

QUESTION FOUR

i. Find
$$\frac{dy}{dx}$$
 given $y = sin^{-1}5x^2$ (4 marks)

- ii. An open, rectangular fish tank is to have a volume of 13.5m³. Determine the least surface area of glass required. (6 marks)
- iii. Find first derivative given, $y = cosech \theta$. (2 marks)

iv. If
$$z = 5x4 + 2x3y2 - 3y$$
 find:

(a)
$$\frac{\partial z}{\partial x}$$

(b) $\frac{\partial z}{\partial y}$
(4 marks)

v. The height of a right circular cone is increasing at 3mm/s and its radius is decreasing at 2mm/s. Determine, correct to 3 significant figures, the rate at which the volume is changing (in cm³/s) when the height is 3.2 cm and the radius is 1.5 cm. (4 marks)

QUESTION FIVE

- An open rectangular container is to have a volume of 32m³. Determine the dimensions and the total surface area such that the total surface area is a minimum. (6 marks)
- ii. The time of oscillation, t, of a pendulum is given by $t = 2\pi \sqrt{\frac{l}{g}}$ where *l* is the sthe length of the pendulum and g the free fall acceleration due to gravity. Determine:

(a)
$$\frac{\partial t}{\partial l}$$

(b) $\frac{\partial t}{\partial l}$ (6 marks)

iii. Find $\frac{dy}{dx}$ given $4x^2 + 2x y^3 - 5 y^2 = 0$ (4 marks)

iv. If $f(x) = 2.5x^2 - 6x + 2$, determine the coordinates at the point at which the gradient is -1. (4 marks)