

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN COMPUTING AND INFORMATION

TECHNOLOGY

AMA 1152 **MATHEMATICS**

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME TWO HOURS

DATE: Sep2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of Choose No questions. Attempt Choose instruction. **Do not write on the question paper.** Q1. (a) Define and give an example

(i)Mutually exclusive events	(3mks)
------------------------------	--------

- (ii)Independent events (3mks)
- (b) A coin is tossed three times
 - (i) Draw a tree diagram to illustrate all the possible outcomes.(3)
 - Find the probability of obtaining\
 - (ii)One head (2mks)
 - (iii)Two heads and a tail in that order (2mks)
 - (iv)Two heads and a tail in any order (3mks)

© (i)
$$\frac{1}{1+\sqrt{3}}$$
 (2mks)

(ii)
$$\frac{1}{1-3\sqrt{2}}$$
 (2mks)

(d) Solve 3^x = 5 (3mks)

Q2. (a) Convert to binary given

(i)85 _{ten}	(4mks)
(ii)3AF-7C ₁₆ to base ten	(4mks)

(b) (i) Add 10111

+ 1011 (3mks)

(ii) Multiply 1101

× 111 (3mks)

© Given t =
$$2\overline{\Lambda}\sqrt{\frac{e}{g}}$$
 find e in terms of t, $\overline{\Lambda}$ and g. (2mks)

(d) Find
$$\begin{vmatrix} 3 & 2 & 1 \\ 1 & 0 & 5 \\ 3 & 4 & 1 \end{vmatrix}$$
 (4mks)

Q3. (a) Solve the equation $3^{x+1} = 2^{2x-3}$	(5mks)
(b) Solve to four significant figures 2 ^x = 5	(5mks)
© Show that (i) $\cos^2\theta + \sin^2\theta = 1$	(5mks)
(ii) 1+ $tan^2\theta = sec^2\theta$	(5mks)

$8x^2 + 2x - 1 = 0$	(2mks)
(b) Given the series 1+4+7+10++43	
Find (i) a ₁₀	(3mks)
(ii) s ₁₀	(3mks)
(iii) n for 43	(3mks)
© Given 1,1/2,1/4,	
Find (i) a ₈	(3mks)
(ii) s ₁₀	(3mks)
(iii) s∞	(3mks)

Q4. (a) Solve by completing the square

Q5. (a)

Class	0 - 9	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59
Frequency	1	3	8	12	9	2

Find (i) Modal class	(3mks)
(ii) Mean	(5mks)
(b) Find the mean and quartile values for	

55,61,57,60,57,60,58,61,59 ((12mks)
	/