

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN UPGRADING MATHEMATICS

AMA 1003: CALCULUS

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2HOURS

DATE: Pick Date September 2018

TIME: 2HRS

Instructions to Candidates You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of 5 questions. **Answer Question One And Any Other Two Questions Do not write on the question paper.**

QUESTION ONE (30MKS)

a) Differentiate from first principles the function $f(x) = 2x^2 + 2x$ [6mks]

- **b**) A straight line passes through (2, 6) is normal to a line Y = -0.5x + 2 find the equation of the straight line [4mks]
- c) Determine the inverse of the function f(x) given that $f(x) = \frac{4-2x}{x}$ 4mks] What is the gradient and y-intercept of the line 3x = 12y - 4
- Determine the gradient of the curve $y = -0.5x^2 + 2x + 1$ at x=5 [4mks] **e**)
- Determine the maximum value of y if $y = -0.02x^3 + 30x^2 + 20$ [7mks] f)
- g) Evaluate i) $\int_{0}^{1} (2x+4) dx$ [3mks]

II)
$$\int_{4}^{9} x^{0.5} dx$$
 [3mks]

QUESTION TWO

- Differentiate from first principles the function $f(x) = 2x^3$ [6mks] a.
- Given that the $q = x^3 0.5x^2 + 100$; determine the coordinates of the turning points b. [8mks]
- Find $g_0 f$ given f(x) = 2x + 1 and $g(x) = 3x^2 + 2$ hence find $g_0 f(0)$ [6mks] c.

QUESTION THREE

d)

a) Determine the value of x where the gradient of the curve $y = -12x - x^3 + 8$ is equal to -18

[4mks]

[4mks]

- b) Use Simpson rule to estimate $\int_2^6 x^2 dx$ with n=4 and hence determine the error in the approximation [8mks]
- c) Given that h(x) = 2x + 4, find h0h(x)[4mks]
- d) Determine the volume of a solid obtained when the curve $y = x^2$ is completely between

QUESTION FOUR

x=0 and x=2[4mks]

- a. Find the area under the curve $y = 3x^2$ between x = -2 to x = 2 and the x-axis by
 - i. Integration method [6mks]
 - ii. Simpson rule with n=4 [8mks]
- b. Determine the turning point to the curve $y = 0.01x^2 0.16x + 10$. Is point a minimal or maxima? [6mks]

QUESTION FIVE

a) Find the second derivatives of the following curves at x = 0

i.
$$y = 3 + 2x^2 + 10x$$
 [3mks]

ii.
$$y = 4x^3$$
 [2mks]

iii.
$$y = 2x^{-1} + 3x + 4$$
 [5mks]

b) Find the area under the curve y = x between x = -2 and x = 2 and x-axis [5mks]

c) evaluate
$$\lim_{x \to 4} \left[\frac{x^2 + 2}{2} \right]$$
 [5mks]