

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN INSTRUMENTATION AND CONTROL ENGINEERING

ECI 2303 : PROCESS CONTROL I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: Sep 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt any THREE **Questions Do not write on the question paper.**

Question ONE

- a) Define the following terms as used in process control
 - i) Control Lag
 - ii) Dead band
 - iii) Process variable
 - iv) Controlling variable
 - v) Dead time (5 Marks)

(12 Marks)

- b) i) With the aid of a block diagram, describe the major components of a process control loop
 - ii) Explain any THREE objectives of process control

c) State any THREE reasons why controllers need tuning (3 Marks)

Question TWO

a) i) Figure 1.0 shows an analogue process control loop for regulation of temperature

Required:

- I) Explain the operation the system.
- II) Implement the process control loop using a computer in a supervisory capacity
- III) Describe the role of the computer in (II).

(8 Marks)

- ii) Define the following
 - I) Discontinuous control mode
 - II) Continuous control mode
 - III) Proportional control mode
 - IV) Integral control mode
 - V) Derivative control mode

(5 Marks)

- b) i) Explain with the aid of error and controller output time relation the single speed floating control action.
 - ii) State the TWO criteria used to evaluate system performance

(7 Marks)

Question THREE

- a) List **TWO**benefits of using analogue computers (2 Marks)
- b) i) The behaviour of a physical system is described by the differential equation

 $4\ddot{x}+200\dot{x}+28000x=1400$ Given that $X_0=\dot{X}_0=0$

Derive a scaled diagram to enable x and $\frac{dx}{dt}$ to be found. Employ time scaling such that "computer time is 50 times real time". For amplitude scaling purposes take maximum amplitude as follows: $|x|_{max} = 0.1$ units and $|\dot{x}|_{max} = 5$ units

ii) Explain the need for amplitude scaling in analogue computer simulation.

(14Marks)

c) With the aid of a block diagram describe the operation of a digital control system

(4Marks)

Question FOUR

- a) i) State the analytic expression of the derivative control mode
 - ii) Give any THREE characteristics of the controller in (i)

(5 Marks)

b) Figure 2.0 shows an analogue electronic controller

- i) State what type of controller it is
- ii) Derive the equation for its output (8 Marks)
- c) i) List any **TWO** elements used in analogue computing

ii) With the aid of a circuit diagram derive the expression for the output voltage of a summing amplifier. (7Marks)

Question FIVE

- a) i) With the aid of a schematic diagram explain the principle of speed-controlled d.c motor dive
 - ii) Give the main constructional differences betweensynchro transmitter and receiver

(5 Marks)

- b) Explain with the aid of schematic diagrams the following
 - I) a synchro data transmission system
 - II) Drag-cup tachogenerator

(15 Marks)