# TECHNICAL UNIVERSITY OF MOMBASA

# Faculty of Engineering & Technology

# DAPARTMENT OF BUILDING & CIVIL ENGINEERING

# DIPLOMA IN BUILDING & CIVIL ENGINEERING

## EBC 2209: REINFORCED CONCRETE AND MASONRY DESIGN

Series: August 2019 Time allowed: 2 hours

## **Instructions to Candidates**

You should have the following for this examination:

- Answer booklet
- Scientific calculator
- BS 8110 1: 1997 structural use of concrete

This paper consists of **FIVE** questions. Answer any **THREE** of the **FIVE** questions.

All questions carry equal marks.

Maximum marks for each part of a question are as shown

*Refer to tables 'A', 'B', and 'C' for values of Asv/Sv, sectional area per metre width for various bar spacings (mm<sup>2</sup>), and cross-sectional areas of group of bars respectively.* 

Use neat large and well labeled diagrams where required

This paper consists of FOUR printed pages

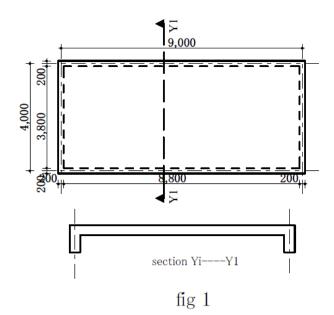
© 2019 - Technical University of Mombasa

#### **Question 1**

 a) Design the longitudinal steel and links for a 300mm square , short braced column to support dead and imposed loads of 1250KN and 650KN respectively (including self weight), given characteristic material strength for concrete and steel as 25N/m<sup>2</sup> and 460 N/mm<sup>2</sup> respectively.

(7<sup>1</sup>/<sub>2</sub> Marks)

b) An internal column in a braced three storey building supporting an approximately symmetrical arrangement of beams (300mm wide x 600mm deep) resulting in characteristic dead and imposed loads of 1500KN on the column. The column is 350mm square and has a clear height of 4.5m. Design the reinforcement of the column given fcu =  $30N/mm^2$  and fy=  $460N/mm^2$  fyv =  $250N/mm^2$ 


### (12<sup>1</sup>/<sub>2</sub> Marks)

#### **Question 2**

A reinforced concrete floor slab spanning between 200mm thick beams is as shown in fig 1. Design the floor slab as a one way slab given the following information:

unit weight of concrete = 24KN/m<sup>3</sup> finishes = 1.2KN/m<sup>2</sup> imposed load = 1.5KN/m<sup>2</sup> fcu = 30 N/mm<sup>2</sup> fy = 500 N/mm<sup>2</sup> and mild exposure condition

(20 Marks)



#### **Question 3**

A 300mm square column carries dead and imposed loads of 1000KN and 400KN respectively. The safe soil bearing capacity of the soil is 200KN/m<sup>2</sup>. Design a square pad footing for the column, given characteristic material strength for concrete and steel as 30N/m<sup>2</sup> and 460 N/m<sup>2</sup> respectively.

(20 Marks)

### **Question 4**

A reinforced concrete beam 300mm wide x 450mm deep is simply supported over a span of 5.0m centre to centre on 200mm wide walls. The beam carries total dead load of 20KN (excluding its self weight) and an imposed load of 15KN. Assuming unit weight of concrete = 24KN/m<sup>3</sup>, fcu = 30 N/mm<sup>2</sup>, fy = 460 N/mm<sup>2</sup> and fyv = 250N/mm<sup>2</sup> for mild steel and moderate exposure condition. design the beam for bending, shear and deflection.

(20 Marks)

## **Question 5**

The cantilever wall shown in fig 2 is backfilled with granular material having a unit weight of 200KN/m<sup>2</sup> and an internal angle of friction of  $28^{0}$ . Assuming that the pressure of the soil is 200KN/m<sup>2</sup>, the coefficient of friction as 0.4 and the unit weight of reinforced concrete as 24KN/m<sup>3</sup>, calculate:

- a) The factors of safety with respect to sliding and overturning.
- b) The ground bearing pressures
- c) Given characteristic material strength for concrete and steel as 25N/m<sup>2</sup> and 460 N/mm<sup>2</sup> respectively, design the stem for bending

(20 Marks)

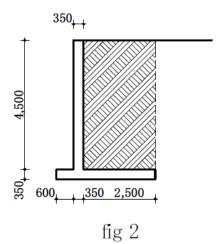



Table A: Values of  $A_{sv}/S_v$ 

| Diameter         | Spacing of links(mm) |       |       |       |       |       |       |       |       |       |       |
|------------------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| of links<br>(mm) | 85                   | 90    | 100   | 125   | 150   | 175   | 200   | 225   | 250   | 275   | 300   |
| 8                | 1.183                | 1.118 | 1.006 | 0.805 | 0.671 | 0.575 | 0.503 | 0.447 | 0.402 | 0.336 | 0.335 |
| 10               | 1.847                | 1.744 | 1.57  | 1.256 | 1.047 | 0.897 | 0.785 | 0.698 | 0.628 | 0.571 | 0.523 |
| 12               | 2.659                | 2.511 | 2.26  | 1.808 | 1.507 | 1.291 | 1.13  | 1.004 | 0.904 | 0.822 | 0.753 |
| 16               | 4.729                | 4.467 | 4.02  | 3.216 | 2.68  | 2.297 | 2.01  | 1.787 | 1.608 | 1.462 | 1.34  |

Table B: Cross-sectional area per metre width for various bar spacings(mm<sup>2</sup>)

| Bar  | 50    | 75    | 100   | 125   | 150  | 175  | 200  | 250  | 300  |
|------|-------|-------|-------|-------|------|------|------|------|------|
| Size |       |       |       |       |      |      |      |      |      |
| (mm) |       |       |       |       |      |      |      |      |      |
| 6    | 566   | 377   | 283   | 226   | 189  | 162  | 142  | 113  | 94.3 |
| 8    | 1010  | 671   | 503   | 402   | 335  | 287  | 252  | 201  | 168  |
| 10   | 1570  | 1050  | 785   | 628   | 523  | 449  | 393  | 314  | 262  |
| 12   | 2260  | 1510  | 1130  | 905   | 754  | 646  | 566  | 452  | 377  |
| 16   | 4020  | 2680  | 2010  | 1610  | 1340 | 1150 | 1010 | 804  | 670  |
| 20   | 6280  | 4190  | 3140  | 2510  | 2090 | 1800 | 1570 | 1260 | 1050 |
| 25   | 9820  | 6550  | 4910  | 3930  | 3270 | 2810 | 2450 | 1960 | 1640 |
| 32   | 16100 | 10700 | 8040  | 6430  | 5360 | 4600 | 4020 | 3220 | 2680 |
| 40   | 25100 | 16800 | 12600 | 10100 | 8380 | 7180 | 6280 | 5030 | 4190 |

Table C: Cross-sectional areas of groups of bars (mm<sup>2</sup>)

| Bar          | Number of bars |      |      |      |      |      |      |       |       |       |  |
|--------------|----------------|------|------|------|------|------|------|-------|-------|-------|--|
| Size<br>(mm) | 1              | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10    |  |
| 6            | 28.3           | 56.6 | 84.9 | 113  | 142  | 170  | 198  | 226   | 255   | 283   |  |
| 8            | 50.3           | 101  | 151  | 201  | 252  | 302  | 352  | 402   | 453   | 503   |  |
| 10           | 78.5           | 157  | 236  | 314  | 393  | 471  | 550  | 628   | 707   | 785   |  |
| 12           | 113            | 226  | 339  | 452  | 566  | 679  | 792  | 905   | 1020  | 1130  |  |
| 16           | 201            | 402  | 603  | 804  | 1010 | 1210 | 1410 | 1610  | 1810  | 2010  |  |
| 20           | 314            | 628  | 943  | 1260 | 1570 | 1890 | 2200 | 2510  | 2830  | 3140  |  |
| 25           | 491            | 982  | 1470 | 1960 | 2450 | 2950 | 3440 | 3930  | 4420  | 4910  |  |
| 32           | 804            | 1610 | 2410 | 3220 | 4020 | 4830 | 5630 | 6430  | 7240  | 8040  |  |
| 40           | 1260           | 2510 | 3770 | 5030 | 6280 | 7540 | 8800 | 10100 | 11300 | 12600 |  |