FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN CIVIL ENGINEERING
 EBC 2207 : THEORY OF STRUCTURES II
 END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019
TIME: 2 HOURS
DATE: Pick Date Aug 2019

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass, a scientific calculator and student ID This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

(a) (i) State Mohr's theorems for slope and deflection
(ii) Using the theorem in (i) above, derive the expressions for maximum slope and deflection for a simply beam of span L carrying a uniformly distributed load $\mathrm{W} \mathrm{KN} / \mathrm{m}$ along its span.
(b) Figure 1 shows a cantilever beam of uniform section.Assuming $\mathrm{E}=210 \mathrm{KN} / \mathrm{mm}^{2}$, use Macaulay's method to determine the maximum slope and deflection on the beam

Question Two

Determine deflection under each point load of the beam shown in figure 2using Macaulay's method; Take $\mathrm{E}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=10^{9} \mathrm{~mm}^{4}$

Fig. 2

Question Three

Obtain the expressions for the slope at the supports and the deflection at mid-span for a simply supported beam carrying a centrally placed concentrated load as shown in fig. 3
(20 marks)

Fig. 3

Question Four

A horizontal beam shown in Figure 4 is of uniform section and 6 m long is simply supported at its ends. Two vertical concentrated loads of 48 KN and 40 KN acts 1 m and 3 m respectively from the left hand support. Determine the position and magnitude of the maximum deflection if; $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{I}=85 \times 10^{-6} \mathrm{~m}^{4}$
(20 marks)

Fig. 4

Question Five

Obtain expressions for the slope and deflection at the free end of the cantilever shown in figure 5 (20 marks)

Fig. 5

