

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN BUILDING AND CIVIL ENGINEERING

EBC 1204: CIVIL ENGINEERING SURVEY 11

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

TIME: 2 HOURS

DATE: Pick Date August 2019

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question One

1(a). Desribe the stages of temporary adjustment of a prismatic compass	(12 marks)
(b). Briefly describe the FOUR types of coordinate systems	(8 marks)
Question Two	
2(a). Define the following terms as applied in theodolite work	
 i. Transitting ii. Swing iii. Line of collimation iv. Face right reading 	(4 marks)

2 (b). The figure 1 shows the lines and the angles of a link traverse ABCDEFG and H. Given the W.C.B's of line AB and GH as 119⁰ 11' 20'', 101⁰ 13' 10'' respectively. Calculate the corrected whole circle bearing of other lines.

(c). Given the coordinates of *A* and the distance and bearing of *AB*, calculate the coordinates of point *B*.

 $E_A = 48\ 964.38\ \text{m}, \qquad N_A = 69\ 866.75\ \text{m}, \qquad \text{WCB}\ AB = 299^0\ 58'46''$ Horizontal distance = 1325.64 (6 marks)

Question Three

3(a). Compute the following quadrant bearings into the whole circle bearings

- I. N 45⁰ 30' E
- II. S 30⁰ 40' E

(b). Convert the following WCB into reduced Bearings

- i. 49⁰
- ii. 240[°]
- iii. 133⁰
- iv. 335⁰

(c). The following bearings are observed while traversing with a compass. Eliminate any effects of local attraction.

Line	Fore bearing	Back bearing
AB	$126^{\circ} 45'$	$308^{\circ} 00'$
BC	49 ⁰ 15'	$227^{\circ} 30'$
CD	$340^{\circ} 30'$	161 ⁰ 45'
DE	258° 30'	78 ⁰ 30'
EA	212 [°] 30'	31 [°] 45'

(12 marks)

(4 marks)

(4 marks)

Question Four

4(a). State any SIX uses of a theodolite	(6 marks)
(b). Outline FIVE advantages of tracheometric survey	(5 marks)
(d). With aid of a sketch, describe the principle of tacheometry	(9 marks)

Question Five

5(a). Table 2 is an abstract from a traverse sheet for a closed traverse.

LINE	BEARING	LENGTH (m)
AB	69 ⁰ 42' 47''	134.11
BC	145 [°] 30' 14''	82.60
CD	200 ⁰ 37' 09''	102.94
DE	277 ⁰ 59' 58''	168.68
EA	17 [°] 43' 10''	98.76

Table 2

Adjust the traverse by Bowditch's method rule given coordinates of A as; 200.00mE and 500.00Mn (20 marks)