

TECHNICAL UNIVERSITY OF MOMBASA

INSTITUTE OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY

(BTIT14S J-FT & BSIT 14S J-FT

ICS 2205: EEE 4250: DIGITAL LOGIC & DIGITAL ELECTRONICS

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

a)	State a	ind prove De Morgan'	s theorem.	(8 Marks)
b)	Differe i.	ntiate between the fo Basic logic gates and		
	ii.	Combinational circu	its and sequential circuits	
	iii.	Level triggered and	edge triggered	(6 Marks)
c)	Prove	using the truth table	A.B + A.B + A.B = A + B	(4 Marks)
d)	Perform the following arithmetic using 2's complement			
	i.	46 + 34		
	ii.	44 - 33		
	iii.	43 - 52		(6 Marks)
e)	Design	and implement a 3-b	it majority function.	(6 Marks)
Siechi	ncai Or	uversity of mombasa		Puye I OJ S

Question TWO

- a) Design the logic circuit of a 2 bit comparator to give the greater than, equality and less than functions at the output. (14 Marks)
- b) Using the NOR gates only implement the equality function. (6 Marks)

Question THREE

- a) Design the logic circuit of a full adder circuit.
 b) Using the full adder implement a 4-bit adder circuit
 (6 Marks)
- c) Provide the additional logic gates that may be included to convert the full adder circuit to a 4 bit adder/subtract circuit.
 (6 Marks)

Question FOUR

- a) Use Boolean Identities to simplify
 - i) $X = \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + A.\overline{B}.\overline{C} + A.\overline{B}.C$

ii)
$$Y = (A + \overline{B} + \overline{C}). (A + \overline{B}.C)$$

iii)
$$\overline{Y = (A + B.A) + (C + D + E.\overline{C})}$$
 (9 Marks)

b) The logic circuit below implements the function Q.

- i. Generate the Boolean expression for the function Q
- ii. Simplify the expression for Q
- iii. Implement using NAND gates only

Question FIVE ©*Technical University of Mombasa* (11 Marks)

a)	Describe the operation of a J-K flip flop.	(6 Marks)
b)	Using a J-K flip flop construct a 4-bit counter.	(6 Marks)
c)	Show the additional logic that need to be added to build a module 8 counter.	(4 Marks)
d)	Describe how hazards associated with propagation delay are overcome.	(4 Marks)