

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING
 UNIVERSITY EXAMINATION FOR:

DIPLOME IN MARINE ENGINEERING (DMAE3)
EMR 2209 APPLIED MECHANICS I
END OF SEMESTER EXAMINATION
SERIES: DEC 2016 PAPER-B

TIME: 2 HOURS

DATE: 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptany THREE questions.
Do not write on the question paper.

Question ONE

(a) Define the following terms:
(i) Mechanics
(ii) Moment of a force
(iii) Couple
(b) Three forces of magnitudes $40 \mathrm{KN}, 15 \mathrm{KN}$ and 20 KN are acting at a point O . The angles made by the $40 \mathrm{KN}, 15 \mathrm{KN}$ and 20 KN forces with the X -axis are $60^{\circ}, 120^{\circ}$, and 240° respectively. By graphical method, determine the magnitude and direction of the resultant.
(c) Four forces of magnitudes $40 \mathrm{KN}, 10 \mathrm{~N}, 20 \mathrm{~N}$ and 30 N are acting along the four sides of a square ABCD as shown below. Each side is 1.5 m . Determine:
(i) The resultant moment about A .
(ii) The magnitude of the resultant force.
(iii) The direction of the resultant, i.e. the angle the resultant makes with the horizontal.
(6 Marks)

Question TWO

(a) The figure below shows a wall crane which carries a maximum load of 2 tonnes. Determine the forces in the two members (links) of the cranes.

(b) A car starts from rest and accelerates uniformly for a period of 12 seconds. It travels at a constant velocity for the next 8 minutes after which it comes to rest in a further

15 seconds. The total distance travelled by the car is 3.5 Km . Sketch a velocity-time graph for the journey and determine:
(i) The constant velocity
(ii) The acceleration
(8 Marks)
(c) A shell is fired vertically upwards at a velocity $\mathbf{u m} / \mathrm{s}$ from the ground. If the shell reaches a maximum height of 1000 m above the ground, determine:
(i) The actual initial velocity, \mathbf{u}.
(ii) The time the shell will take to pass a point 480 m above the ground while going up and while coming down

Question THREE

(a) Define the following terms and state the SI units for each:
(i) Centrifugal acceleration
(ii) Angular acceleration
(4 Marks)
(b) A body performing simple harmonic motion has a velocity of $12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 m , the displacement being measured from the mid-point. Calculate the following:
(i) Amplitude of the motion.
(ii) Frequency of the motion.
(iii) The acceleration when the displacement is 75 mm .
(c) An electric motor, initially at rest, is caused to rotate with uniform angular acceleration of $31.42 \mathrm{rad} / \mathrm{s}^{2}$. Find, after 3 seconds from the beginning of rotation:
(i) The speed of rotation of the motor in rev/min.
(ii) The number of revolutions through which the motor has turned.
(7 Marks)

Question FOUR

(a) (i) Distinguish between Momentum and Impulse of a force.
(ii) State the principle of conservation of momentum.
(4 Marks)
(b) Two trucks travelling in the same straight line collide and remain locked together after impact. Truck A has a mass of 100 Kg and has a velocity of $12 \mathrm{~m} / \mathrm{s}$ due east. Truck B has a mass of 150 Kg and has a velocity of $6 \mathrm{~m} / \mathrm{s}$ due west. Determine:
(i) The magnitude and direction of the velocity of the trucks after impact.
(ii) The total kinetic energy of the trucks:

- Before impact
- After impact
(6 Marks)
(c) A pile driver of mass 1.5 tonnes falls freely through a distance of 2 m on to a pile whose mass is 0.5 tonnes. When the pile is nearly fully driven, the average resistance to motion is 800 KN . Determine the penetration per blow at this stage and the kinetic energy lost at impact.

Question FIVE

(a) State the FOUR laws of solid friction.
(4 Marks)
(b) A man wishing to slide a block of weight 100 N over a horizontal concrete floor, ties a rope to the block and pulls it in a direction inclined upwards at an angle of 20° to the horizontal. Calculate the minimum pull necessary to slide the block if the coefficient of friction, $\mu=0.6$.
(5 Marks)
(c) Determine the force required to push a block of weight 150 N up an incline of 45° when the force is:
(i) Parallel to the incline
(ii) Horizontal

Take coefficient of friction, $\mu=0.5$.

