

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING
 UNIVERSITY EXAMINATION FOR:

DIPLOME IN MARINE ENGINEERING (DMAE3)
EMR 2209 APPLIED MECHANICS I
END OF SEMESTER EXAMINATION
SERIES: DEC 2016 PAPER-A

TIME: 2 HOURS

DATE: 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptany THREE questions.
Do not write on the question paper.

Question ONE

(a) Define the following terms:
(i) Coplanar forces
(ii) Couple
(iii) Concurrent forces
(6 Marks)
(b) Four forces of magnitudes $50 \mathrm{KN}, 30 \mathrm{KN}, 20 \mathrm{KN}$ and 10 KN are acting at a point O as shown in the figure below. Determine, by drawing polygon of the forces, the value of the resultant force and its direction.

(c) The figure below shows a wall crane which carries a maximum load of 2 tonnes. Determine the forces in the two members (links) of the cranes.
(6 Marks)

Question TWO

(a) A car starts from rest and accelerates uniformly for a period of 12 seconds. It travels at a constant velocity for the next 8 minutes after which it comes to rest in a further 15 seconds. The total distance travelled by the car is 3.5 Km . Sketch a velocity-time graph for the journey and determine:
(i) The constant velocity
(ii) The acceleration
(iii) The average retardation
(10 Marks)
(b) A ball is projected upwards at an angle of 30° to the horizontal from the top of a tower which is 50 m above the ground. If the initial velocity of the ball is $20 \mathrm{~m} / \mathrm{s}$ and air resistance is neglected, calculate:
(i) The time of flight
(ii) The horizontal range
(iii) The velocity and the angle with which the ball hits the ground
(10 Marks)

Question THREE

(a) Define simple harmonic motion and with the aid of suitable diagrams, illustrate THREE types of this kind of motion.
(7 Marks)
(b) A body performing simple harmonic motion has a velocity of $12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 m , the displacement being measured from the mid-point. Calculate the following:
(i) Amplitude of the motion.
(ii) Frequency of the motion.
(iii) The acceleration when the displacement is 75 mm .
(9 Marks)
(c) A wheel rotating about a fixed axis at $30 \mathrm{rev} / \mathrm{min}$ is uniformly accelerated for 50 seconds during which it makes 40 revolutions. Find:
(i) Angular velocity at the end of the interval.
(ii) The time required for the speed to reach $80 \mathrm{rev} / \mathrm{min}$.

Question FOUR

(a) (i) Distinguish between Momentum and Impulse of a force.
(ii) State the principle of conservation of momentum.
(4 Marks)
(b) Two trucks travelling in the same straight line collide and remain locked together after impact. Truck A has a mass of 100 Kg and has a velocity of $12 \mathrm{~m} / \mathrm{s}$ due east. Truck B has a mass of 150 Kg and has a velocity of $6 \mathrm{~m} / \mathrm{s}$ due west. Determine:
(i) The magnitude and direction of the velocity of the trucks after impact.
(ii) The total kinetic energy of the trucks:

- Before impact
- After impact
(6 Marks)
(c) A mass of 700 Kg falling 0.2 m from up is used to drive a pile of mass 500 Kg into the ground. The pile is driven 75 mm into the ground. If there is no rebound, find the:
(i) Common velocity of pile and the pile hammer after impact.
(ii) Loss of kinetic energy on impact.
(iii) Efficiency of the pile driving operation.

Question FIVE

(a) State the FOUR laws of solid friction.
(4 Marks)
(b) A man wishing to slide a block of weight 100 N over a horizontal concrete floor, ties a rope to the block and pulls it in a direction inclined upwards at an angle of 20° to the horizontal. Calculate the minimum pull necessary to slide the block if the coefficient of friction, $\mu=0.6$.
(5 Marks)
(c) Determine the force required to push a block of weight 150 N up an incline of 45° when the force is:
(i) Parallel to the incline
(ii) Horizontal

Take coefficient of friction, $\mu=0.5$.
(11 Marks)

