

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOME IN MARINE ENGINEERING (DMAE3)

EMR 2209 APPLIED MECHANICS I END OF SEMESTER EXAMINATION

SERIES: DEC 2016 PAPER-A

TIME: 2 HOURS

DATE: 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptany THREE questions. **Do not write on the question paper.**

Question ONE

- (a) Define the following terms:
 - (i) Coplanar forces
 - (ii) Couple
 - (iii)Concurrent forces

(6 Marks)

(b) Four forces of magnitudes 50KN, 30KN, 20KN and 10KN are acting at a point O as shown in the figure below. Determine, by drawing polygon of the forces, the value of the resultant force and its direction.

(8 Marks)

- (c) The figure below shows a wall crane which carries a maximum load of 2 tonnes. Determine the forces in the two members (links) of the cranes.
 - (6 Marks)

Question TWO

- (a) A car starts from rest and accelerates uniformly for a period of 12 seconds. It travels at a constant velocity for the next 8 minutes after which it comes to rest in a further 15 seconds. The total distance travelled by the car is 3.5Km. Sketch a velocity-time graph for the journey and determine:
 - (i) The constant velocity
 - (ii) The acceleration
 - (iii) The average retardation

(10 Marks)

- (b) A ball is projected upwards at an angle of 30° to the horizontal from the top of a tower which is 50m above the ground. If the initial velocity of the ball is 20m/s and air resistance is neglected, calculate:
 - (i) The time of flight
 - (ii) The horizontal range
 - (iii) The velocity and the angle with which the ball hits the ground

(10 Marks)

Question THREE

 (a) Define simple harmonic motion and with the aid of suitable diagrams, illustrate THREE types of this kind of motion.

(7 Marks)

- (b) A body performing simple harmonic motion has a velocity of 12 m/s when the displacement is 50mm and 3 m/s when the displacement is 100m, the displacement being measured from the mid-point. Calculate the following:
 - (i) Amplitude of the motion.
 - (ii) Frequency of the motion.

(iii) The acceleration when the displacement is 75mm.

(9 Marks)

- (c) A wheel rotating about a fixed axis at 30rev/min is uniformly accelerated for 50 seconds during which it makes 40 revolutions. Find:
 - (i) Angular velocity at the end of the interval.
 - (ii) The time required for the speed to reach 80rev/min.

(4 Marks)

Question FOUR

- (a) (i) Distinguish between Momentum and Impulse of a force.
 - (ii) State the principle of conservation of momentum.

(4 Marks)

- (b) Two trucks travelling in the same straight line collide and remain locked together after impact. Truck A has a mass of 100Kg and has a velocity of 12 m/s due east. Truck B has a mass of 150Kg and has a velocity of 6 m/s due west. Determine:
 - (i) The magnitude and direction of the velocity of the trucks after impact.
 - (ii) The total kinetic energy of the trucks:
 - Before impact
 - After impact

(6 Marks)

- (c) A mass of 700Kg falling 0.2m from up is used to drive a pile of mass 500Kg into the ground. The pile is driven 75mm into the ground. If there is no rebound, find the:
 - (i) Common velocity of pile and the pile hammer after impact.
 - (ii) Loss of kinetic energy on impact.
 - (iii) Efficiency of the pile driving operation.

(10 Marks)

Question FIVE

(a) State the **FOUR** laws of solid friction.

(4 Marks)

(b) A man wishing to slide a block of weight 100N over a horizontal concrete floor, ties a rope to the block and pulls it in a direction inclined upwards at an angle of 20° to the horizontal. Calculate the minimum pull necessary to slide the block if the coefficient of friction, μ =0.6.

(5 Marks)

- (c) Determine the force required to push a block of weight 150N up an incline of 45° when the force is:
 - (i) Parallel to the incline
 - (ii) Horizontal

Take coefficient of friction, μ =0.5.

(11 Marks)