TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2415 : STRUCTURAL DESIGN II

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: 15 Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.
This paper consists of five questions.
Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question One (Compulsory)

(a) The BS 8110 design formula for an axially reinforced concrete column is the equation 1.1:
$N=0.4 f_{c u} A_{c}+0.75 f_{y} A_{s c}$ 1.1

Where:
$f_{c u}=$ the characteristic strength of the concrete,
$f_{y}=$ the characteristic strength of the reinforcing steel,
$A_{c}=$ area of concrete,
$A_{s c}=$ area of reinforcing bars in compression
From basic concepts derive equation 1.1
(6 marks)
(b) Calculate the ultimate axial load of a $500 \mathrm{~mm} \times 250 \mathrm{~mm}$ column section having 6 No. size 20 mm bars if $\mathrm{f}_{\mathrm{cu}}=40 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$.
(c) Design the longitudinal reinforcement for a braced short column of dimensions 500×250 mm if:
(i) Axial ultimate load $\mathrm{N}=2300 \mathrm{kN}$ and moment $\mathrm{M}_{\mathrm{x}}=290 \mathrm{kNm}$,
(ii) Axial ultimate axial load $\mathrm{N}=2000 \mathrm{kN}$, moments $\mathrm{M}_{\mathrm{x}}=290 \mathrm{kNm}$ and $\mathrm{M}_{\mathrm{y}}=50$ kNm .
Characteristic strengths: $\mathrm{f}_{\mathrm{cu}}=40 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$.

Table 1.1: values of β (BS 8110: cl.3.8.4.5)

$\frac{N}{f_{c u} b h}$	0.0	0.1	0.2	0.3	0.4	0.5	≥ 0.6
β	1.00	0.88	0.77	0.65	0.53	0.42	0.30

Fig.1.1: Column design chart - BS 8110

(14 marks)

Question Two

(a) The design moment for a beam, width 300 mm and effective depth 600 mm is 300 kNm . If $f_{c u}=40 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$, design the reinforcement using chart Figure 2.1.

Doubly reinforced beams

$x / d=0.4$-----.
$x / d=0.5---$

Figure 2.1: Beam design chart - ultimate limit state (BS8110)
(b) (i) The ultimate moment of resistance, about tension steel, of a singly reinforced rectangular concrete beam subject to flexure is given by equation 2.1:
$M_{u}=0.156 f_{c u} b d^{2}$
2.1

Where:
$f_{c u}=$ concrete characteristic strength,
$b=$ beam width,
$d=$ beam effective depth.
Using a neat sketch of BS 8110 simplified rectangular stress block, derive equation 2.1.

(8 marks)

(ii) Using BS 8110 simplified stress block, determine the ultimate moment of resistance of the beam section Figure 2.2, if $f_{c u}=40 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=460$ $\mathrm{N} / \mathrm{mm}^{2}$

Figure 2.2: Singly reinforced concrete beam section

Question Three

Fig. 3.1 shows an interior concrete floor slab panel supported on reinforced concrete beams on all four sides, with provision for torsion at the corners. Using the relevant tables attached, design the slab for the ultimate limit state only. The factored design load, that includes self weight, $\mathrm{n}=$ $36.0 \mathrm{kN} / \mathrm{m}^{2}$, slab initial trial thickness $=150 \mathrm{~mm}, \mathrm{f}_{\mathrm{cu}}=40 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. 3.1: Interior solid reinforced concrete floor slab panel
(20 marks)

Table 3.1: Bending moment coefficients (BS 8110: clause 3.5.3.4)
Bending moment coefficients for rectangular panels supported on four sides with provision for torsion at corners

Type of panel	Short span coefficients, β_{sx}								Long span coefficients, β_{sy}, for all values of $1_{y} / l_{x}$	
and moments	Values of $1_{y} / l_{x}$									
considered	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0		

Interior panels Negative moment continuous edge									
Positive moment mid-span	0.031	0.037	0.042	0.046	0.050	0.053	0.059	0.063	0.032

Table 3.2: lever- arm and neutral axis depth factors

$\mathrm{K}=\mathrm{M} /\left(\mathrm{bd}^{2} \mathrm{f}_{\mathrm{cu}}\right)$	0.05	0.06	0.07
$(\mathrm{z} / \mathrm{d})$	0.94	0.93	0.91
(x/d)	0.13	0.16	0.19

Table 3.3: minimum areas of reinforcement in members (BS 8110: clause 3.12.5.1)

situation	Definition			
percentage		of	Minimum percentage	
:---	:---:			

Question Four

A footing is required to transmit, from a $400 \mathrm{~mm} \times 200 \mathrm{~mm}$ column with 16 mm diameter dowels, the following axial loads:
(i) Dead loads $\mathrm{G}_{\mathrm{k}}=750 \mathrm{kN}$,
(ii) Live loads $\mathrm{Q}_{\mathrm{k}}=250 \mathrm{kN}$.

Material characteristics:
Soil bearing pressure $=200 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{f}_{\mathrm{cu}}=40 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{y}}=460 \mathrm{~N} / \mathrm{mm}^{2}$.
Design the footing to include the following checks
(i) Dowel achorage
(ii) Punching shear,
(iii) Bending
(iv) Local bond stress,
(v) Shear

Table 4.1: Anchorage lengths
[Anchorage length $L=\left(K_{A}\right)($ bar size $)$]

		$\mathbf{K}_{\mathbf{A}}$			
	$\mathrm{f}_{\mathrm{cu}}=$	20	25	30	40 or more
Deformed Type 2 (460)					
Tension	46	41	35	30	
Compression	31	27	24	20	

Table 4.2: Design concrete shear stress $v_{c}-$ for $^{f_{c u}} \geq 40 \mathrm{~N} / \mathrm{mm}^{2}$

$100 \mathrm{~A}_{\mathrm{s}}$							
	Effective depth d (mm)						
元	150	175	200	225	250	300	≥ 400
≤ 0.15	0.50	0.48	0.47	0.45	0.44	0.42	0.40
0.25	0.60	0.57	0.55	0.54	0.53	0.50	0.47
0.50	0.75	0.73	0.70	0.68	0.65	0.63	0.59

Table 4.3: lever- arm and neutral axis depth factors

$\mathrm{K}=\mathrm{M} /\left(\mathrm{bd}^{2} \mathrm{f}_{\mathrm{cu}}\right)$	0.05	0.06	0.07
(z/d)	0.94	0.93	0.91

Table 4.4: Ultimate local bond stress in beams ($\mathrm{N} / \mathrm{mm}^{2}$)

Bar type	Concrete grade			
	20	25	30	40 or more
Deformed, type 2	2.5	3.0	3.4	4.1

Table 4.5: minimum areas of reinforcement in members (BS 8110: clause 3.12.5.1)

situation	$\begin{aligned} & \text { Definition of } \\ & \text { percentage } \end{aligned}$	Minimum percentage	
		$\begin{aligned} & \mathrm{f}_{\mathrm{y}}=250 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{y}}=460 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
		\%	\%
Tension reinforcement Rectangular section (in solid slabs, this minimum should be provided in both directions)	$100 \mathrm{~A}_{\text {sc }} / \mathrm{A}_{\mathrm{c}}$	0.24	0.13

