

## **TECHNICAL UNIVERSITY OF MOMBASA**

## FACULTY OF ENGINEERING AND TECHNOLOGY

## DEPARTMENT OF BUILDING & CIVIL ENGINEERING

### **UNIVERSITY EXAMINATION FOR:**

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2415: STRUCTURAL DESIGN II

**END OF SEMESTER EXAMINATION** 

**SERIES:** DECEMBER 2016

TIME: 2 HOURS

**DATE:** 15 Dec 2016

### **Instructions to Candidates**

You should have the following for this examination

-Answer Booklet, examination pass and student ID

-Drawing instruments.

This paper consists of five questions.

Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

### **Question One (Compulsory)**

(a) The BS 8110 design formula for an axially reinforced concrete column is the equation 1.1:

$$N = 0.4 f_{cu} A_c + 0.75 f_y A_{sc}$$
 1.1

Where:

 $f_{cu}$  = the characteristic strength of the concrete,

 $f_y = the \ characteristic \ strength \ of \ the \ reinforcing \ steel,$ 

 $A_c = area of concrete,$ 

 $A_{sc} = area\ of\ reinforcing\ bars\ in\ compression$ 

From basic concepts derive equation 1.1

(6 marks)

(b) Calculate the ultimate axial load of a 500 mm x 250 mm column section having 6 No. size 20 mm bars if  $f_{cu} = 40 \text{ N/mm}^2$  and  $f_v = 460 \text{ N/mm}^2$ .

(5 marks)

- (c) Design the longitudinal reinforcement for a braced short column of dimensions 500 x 250 mm if:
  - (i) Axial ultimate load N = 2300 kN and moment  $M_x = 290 \text{ kNm}$ ,
  - (ii) Axial ultimate axial load N = 2000 kN, moments  $M_x = 290$  kNm and  $M_y = 50$  kNm.

Characteristic strengths:  $f_{cu} = 40 \ N/mm^2$  and  $f_y = 460 \ N/mm^2$ .

**Table 1.1:** values of  $\beta$  (BS 8110: cl.3.8.4.5)

| N                     | 0.0  | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | ≥ 0.6 |
|-----------------------|------|------|------|------|------|------|-------|
| $\overline{f_{cu}bh}$ |      |      |      |      |      |      |       |
| β                     | 1.00 | 0.88 | 0.77 | 0.65 | 0.53 | 0.42 | 0.30  |



**Fig.1.1:** Column design chart – BS 8110

(14 marks)

# **Question Two**

(a) The design moment for a beam, width 300 mm and effective depth 600 mm is 300 kNm. If  $f_{cu} = 40 \text{ N/mm}^2$  and  $f_y = 460 \text{ N/mm}^2$ , design the reinforcement using chart Figure 2.1.



**Figure 2.1:** Beam design chart - ultimate limit state (BS8110)

(5 marks)

**(b)** (i) The ultimate moment of resistance, about tension steel, of a singly reinforced rectangular concrete beam subject to flexure is given by equation 2.1:

$$M_u = 0.156 f_{cu} b d^2 2.1$$

Where:

 $f_{cu} = concrete\ characteristic\ strength,$ 

b = beam width,

d = beam effective depth.

Using a neat sketch of BS 8110 simplified rectangular stress block, derive equation 2.1.

(8 marks)

(ii) Using BS 8110 simplified stress block, determine the ultimate moment of resistance of the beam section Figure 2.2, if  $f_{cu} = 40 \text{ N/mm}^2$  and  $f_y = 460 \text{ N/mm}^2$ 



Figure 2.2: Singly reinforced concrete beam section

(7 marks)

## **Question Three**

Fig. 3.1 shows an interior concrete floor slab panel supported on reinforced concrete beams on all four sides, with provision for torsion at the corners. Using the relevant tables attached, design the slab for the ultimate limit state only. The factored design load, that includes self weight,  $n = 36.0 \text{ kN/m}^2$ , slab initial trial thickness = 150 mm,  $f_{cu} = 40 \text{ N/mm}^2$ ,  $f_y = 460 \text{N/mm}^2$ .



Fig. 3.1: Interior solid reinforced concrete floor slab panel

(20 marks)

**Table 3.1:** Bending moment coefficients (BS 8110: clause 3.5.3.4)

| Bending momen     | nt coeff | icients                                  | for rect | angular | panels | support | ed on | four sid | es with provision                            | n for |
|-------------------|----------|------------------------------------------|----------|---------|--------|---------|-------|----------|----------------------------------------------|-------|
| torsion at corner | S        |                                          |          |         |        |         |       |          |                                              |       |
| Type of panel     | Short s  | Short span coefficients, $\beta_{sx}$    |          |         |        |         |       | Long     | span                                         |       |
| and moments       | Values   | Values of l <sub>v</sub> /l <sub>x</sub> |          |         |        |         |       |          | coefficients, $\beta_{sy}$ ,                 | for   |
| considered        | 1.0      | 1.1                                      | 1.2      | 1.3     | 1.4    | 1.5     | 1.75  | 2.0      | all values of l <sub>y</sub> /l <sub>x</sub> |       |

| Interior pane                            | els |       |       |       |       |       |       |       |       |       |
|------------------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Negative<br>moment<br>continuous<br>edge | at  | 0.031 | 0.037 | 0.042 | 0.046 | 0.050 | 0.053 | 0.059 | 0.063 | 0.032 |
| Positive<br>moment<br>mid-span           | at  | 0.024 | 0.028 | 0.032 | 0.035 | 0.037 | 0.040 | 0.044 | 0.048 | 0.024 |

Table 3.2: lever- arm and neutral axis depth factors

| $K = M/(bd^2f_{cu})$ | 0.05 | 0.06 | 0.07 |
|----------------------|------|------|------|
| (z/d)                | 0.94 | 0.93 | 0.91 |
| (x/d)                | 0.13 | 0.16 | 0.19 |

Table 3.3: minimum areas of reinforcement in members (BS 8110: clause 3.12.5.1)

| situation                                         | Definition        | of | Minimum percentage |                   |
|---------------------------------------------------|-------------------|----|--------------------|-------------------|
|                                                   | percentage        |    | $f_{y} = 250$      | $f_{y} = 460$     |
|                                                   |                   |    | N/mm <sup>2</sup>  | N/mm <sup>2</sup> |
|                                                   |                   |    | %                  | %                 |
| Tension reinforcement                             |                   |    |                    |                   |
| Rectangular section (in solid slabs, this minimum | $100A_{sc}/A_{c}$ |    | 0.24               | 0.13              |
| should be provided in both directions)            |                   |    |                    |                   |

### **Question Four**

A footing is required to transmit, from a 400 mm x 200 mm column with 16 mm diameter dowels, the following axial loads:

- (i) Dead loads  $G_k = 750 \text{ kN}$ ,
- (ii) Live loads  $Q_k = 250 \text{ kN}$ .

### Material characteristics:

Soil bearing pressure = 200 kN/m²,  $f_{cu}$  = 40 N/mm² and  $f_y$  = 460 N/mm².

Design the footing to include the following checks

- (i) Dowel achorage
- (ii) Punching shear,
- (iii) Bending
- (iv) Local bond stress,

**Table 4.1:** Anchorage lengths

## [Anchorage length $L = (K_A)$ (bar size)]

|                       |            | KA |    |    |            |  |
|-----------------------|------------|----|----|----|------------|--|
|                       | $f_{cu} =$ | 20 | 25 | 30 | 40 or more |  |
| Deformed Type 2 (460) |            |    |    |    | _          |  |
| Tension               |            | 46 | 41 | 35 | 30         |  |
| Compression           |            | 31 | 27 | 24 | 20         |  |

Table 4.2: Design concrete shear stress  $v_c$  – for  $f_{cu} \ge 40 \ N/mm^2$ 

| 100A <sub>s</sub> |      | Effective depth d (mm) |      |      |      |      |       |  |  |
|-------------------|------|------------------------|------|------|------|------|-------|--|--|
| b <sub>v</sub> d  | 150  | 175                    | 200  | 225  | 250  | 300  | ≥ 400 |  |  |
| ≤ 0.15            | 0.50 | 0.48                   | 0.47 | 0.45 | 0.44 | 0.42 | 0.40  |  |  |
| 0.25              | 0.60 | 0.57                   | 0.55 | 0.54 | 0.53 | 0.50 | 0.47  |  |  |
| 0.50              | 0.75 | 0.73                   | 0.70 | 0.68 | 0.65 | 0.63 | 0.59  |  |  |

Table 4.3: lever- arm and neutral axis depth factors

| $K = M/(bd^2f_{cu})$ |      |      |      |
|----------------------|------|------|------|
| (z/d)                | 0.94 | 0.93 | 0.91 |

**Table 4.4:** Ultimate local bond stress in beams (N/mm<sup>2</sup>)

| Bar type         | Concrete grade |     |     |         |  |  |  |
|------------------|----------------|-----|-----|---------|--|--|--|
|                  | 20             | 25  | 30  | 40      |  |  |  |
|                  |                |     |     | or more |  |  |  |
| Deformed, type 2 | 2.5            | 3.0 | 3.4 | 4.1     |  |  |  |

 Table 4.5: minimum areas of reinforcement in members (BS 8110: clause 3.12.5.1)

| situation                                         | Definition of     | Minimum pe        | ercentage         |
|---------------------------------------------------|-------------------|-------------------|-------------------|
|                                                   | percentage        | $f_{y} = 250$     | $f_y = 460$       |
|                                                   |                   | N/mm <sup>2</sup> | N/mm <sup>2</sup> |
|                                                   |                   | %                 | %                 |
| Tension reinforcement                             |                   |                   |                   |
| Rectangular section (in solid slabs, this minimum | $100A_{sc}/A_{c}$ | 0.24              | 0.13              |
| should be provided in both directions)            |                   |                   |                   |