

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING & CIVIL ENGINEERING **UNIVERSITY EXAMINATION FOR:** BACHELOR OF SCIENCE IN CIVIL ENGINEERING **ECE 2407: STRUCTURAL DESIGN I** SPECIAL SUPPLEMENTARY EXAMINATION **SERIES:** SEPT. 2017 **TIME:** 2 HOURS

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of four questions. Answer question ONE (COMPULSORY) and any other TWO questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

(a) A 305 x 102 x 33 kg/m UB has a value of $Z_{xx} = 414.6 \text{ cm}^3$. Calculate the safe uniformly distributed load for this beam for an effective span of 4.5 m, if the working stress is 165 N/mm².

(5.5 marks)

(b) A universal beam of 4.0 m effective span is required to carry central load of 50 kN. Select a suitable section from the steel tables provided. Steel working stress f = 165 N/mm²

(5.5 marks)

(c) A beam of 5.0 m effective span is loaded as shown in Figure 1.1. Assuming a maximum stress of 165 N/mm², calculate the necessary section modulus of the beam.

Figure 1.1: Loaded beam

(19 marks)

Page 1 of 4

ATTEMPT ANY TWO QUESTIONS

QUESTION TWO

(a) Concisely, discuss the methods used to determine the strength of struts.

(6 marks)

(b) An intermediate length of a stanchion is 3.5 m long and is loaded as shown in Figure 2.1. The loads indicated are transmitted by floor beams and by the stanchion length above, which is 3.0 m long and consists of a 203 x 203 x 71 kg/m UC. Test the suitability of the section of the intermediate column, with grade 43 steel.

(14 marks)

Figure 2.1: Loading of the intermediate column

254 x 254 mm x 73 kg/m UC:

A = web load = 75 kN, B = web load = 100 kN, C = flange load = 75 kN,

Axial load from the column above = 500 kN, web thickness = 8.6 mm,

Effective length = 0.7(actual legth), $p_{bc} = 165 \text{ N/mm}^2$.

QUESTION THREE

Design a base plate in grade 43 steel to carry an axial load of 3000 kN. The base rests on 1:2:4 concrete (safe bearing pressure = 4200 kN/m^2) the column serial size: $305 \times 305 \times 198 \text{ kg/m}$ (Actual dimensions: $339.9 \times 314.1 \text{ mm} \times 198 \text{ kg/m}$). (20 Marks)

QUESTION FOUR

A timber column of redwood GS grade consists of a 125 mm square section which is restrained at both ends in position but not in direction. Assuming that the actual height of the column is 3.5 m, calculate the maximum axial long-term load that the column can support. (20 Marks)

Page 2 of 4

Tuble 4.1. Encenve length of compression members											
End	conditions	$effective length _ L_e$									
		actual lengthL									
(a)	Restrained at both ends in position and in direction	0.7									
(b)	Restrained at both ends in position and one end in	0.85									
	direction										
(c)	Restrained at both ends in position but not in direction	1.0									
(d)	Restrained at one end in position and direction and at the	1.5									
	other end in direction but not in position										
(e)	Restrained at one end in position and direction and free	2.0									
	at the other end										

Table 4.1: Effective length of compression members

Table 21, BS 5268

Table 4.2: Softwood species/grade combinations which satisfy the requirements for strength classes graded to BS4978

Standard name	Strength class								
	SC1	SC2	SC3	SC4	SC5				
Redwood			GS/M50	SS	M75				
Whitewood			GS/M50	SS	M75				
Western red cedar	GS	SS							
Scots Pine			GS/M50	SS	M75				
Table 3, BS 5268									

Table 4.3: Grade stresses and moduli of elasticity for strength classes for the dry exposure condition (based on Table 9, BS5268)

Strengt	Bendin	Tensio	Compres	Compressio		Shear	Modulus of		Approx.
h class	g	n	sion	n		parallel	elasticity		density
	parallel	parallel	parallel	perpendicul		to grain	(N/mm^2)		$(kg/m^3)^b$
	to grain	to grain	to grain	ar to grain		(N/mm^2)	Emean	E_{min}	
	(N/mm	(N/mm	(N/mm^2)	$(N/mm^2)^a$)			
	²)	²)							
SC1	2.8	2.2	3.5	2.1	1.2	0.46	6800	4500	540
SC2	4.1	2.5	5.3	2.1	1.6	0.66	8000	5000	540
SC3	5.3	3.2	6.8	2.2 1.7		0.67	8800	5800	540
SC4	7.5	4.5	7.9	2.4 1.9		0.71	9900	6600	590
SC5	10.0	6.0	8.7	2.8 2.4		1.00	10700	7100	590/760

^a When the specification specifically prohibits wane at bearing areas , the higher values may

be taken,

^b Crude estimates of the densities,

Table 4.4: Modification factor K_3 for duration of loading

Duration of loading	Value of K_3		
Long term (e.g. dead + permanent imposed ^a)	1.00		
Medium term (e.g. dead + snow, dead + temporary imposed)			
Short term (e.g. dead + imposed + wind ^b , dead + imposed + snow + wind ^b)			
Very short term (e.g. dead + imposed + wind ^c)	1.75		

Table 17, BS 5268

^a For imposed floor loads $K_3 = 1.00$

^b For wind, short term category applies to class C (15 s gust) as defined in CP 3: Chapter V: Part 2

^c For wind, very short term category applies to classes A and B (3 or 5 s gust) as defined in CP 3: Chapter V: Part 2

	1,	010 110	• 11100	mouno	II Iucio	1112 1		pressi		moorb							
Ε	E Value K_{12}																
$\overline{\sigma_c}$	Value of slenderness ratio λ																
	< 5	5	10	20	30	40	50	60	70	80	90	100	120	140	160	180	200
800	1.00	0.97	0.95	0.903	0.851	0.79	0.72	0.64	0.57	0.49	0.43	0.37	0.28	0.21	0.17	0.13	0.1
	0	5	2			2	4	9	2	7	0	1	0	7	2	9	5
900	1.00	0.97	0.95	0.904	0.853	0.79	0.73	0.66	0.59	0.52	0.45	0.39	0.30	0.23	0.18	0.15	0.1
	0	5	2			7	4	5	2	2	6	7	4	7	0	2	7

Table 4.5: Modification factor K_{12} for compression members

Table 22, BS 5268

