THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2406: FOUNDATION ENGINEERING I

END OF SEMESTER EXAMINATIONS
SERIES: DECEMBER, 2016

TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATE:

1. You should have the following for this examination:

- Answer booklet.
- Mathematical Table/Pocket Calculator.

2. This paper consists of FOUR questions.
3. Answer question ONE (Compulsory) and any other TWO questions.
4. This paper consists of FIVE printed pages.
5. Do not write on the question paper.

Question One

a) The active lateral earth pressure, at the bottom of a smooth vertical back of a retaining wall, exerted by a " $\mathrm{c}-\varphi$ "- soil, with a horizontal top surface, is given by the expression

$$
\begin{equation*}
p_{a}=\gamma z K_{a}-2 c \sqrt{K_{a}} \tag{1.1}
\end{equation*}
$$

From basic principles, derive this expression.
(12 Marks)
b) Details of a retaining wall are given in Figure 1.1.
(i) Plot the active lateral pressure distribution on the back of the wall.
(ii) Calculate the total lateral active thrust on the wall back and its position above the base.

Surcharge pressure $\mathrm{q}=27 \mathrm{kN} / \mathrm{m}^{2}$

Figure 1.1: Retaining wall vertical dimensions and strength parameters of the retained soils.
(18 Marks)

Question Two

(a) For a circular-slip slope failure in a " $\mathrm{c}-\varphi$ " soil, the factor of safety against sliding is given by the expression

$$
\begin{equation*}
F=\frac{c r \theta+\Sigma N \tan \varphi}{\Sigma T} \tag{2.1}
\end{equation*}
$$

Using a neat sketch, derive the expression from the basic principles.
(8 marks)
(b) Ignoring tension cracks, investigate the stability of the embankment shown in Figure 2.1. Soil properties:
$\varphi=30^{\circ}, \mathrm{c}=10 \mathrm{kN} / \mathrm{m}^{2}$ and $\gamma=21 \mathrm{kN} / \mathrm{m}^{3}$

Question Three

(a) Explain the following soil bearing capacity terms:
(i) Ultimate bearing capacity,
(ii) Safe bearing capacity,
(iii) Allowable bearing capacity.
(b) From first principles, derive an equation for the determination of bearing capacity of soils based on earth pressure theory.
(10 marks)
(c) A strip footing is 2.5 m wide and founded at a depth of 1.2 m in a soil of unit weight 17.3 $\mathrm{kN} / \mathrm{m}^{3}$, cohesion $20 \mathrm{kN} / \mathrm{m}^{2}$ and angle of internal friction of 20°. Using Terzaghi's formula and Figure 3.1, determine the safe bearing capacity of the foundation if factor of safety is 3.0.

Figure 3.1: Bearing capacity factors

Question Four

(a) State and explain the stages of settlement experienced by a clay soil due to foundation loading.
(b) Figure 4.1 shows a section of a rigid foundation and supporting strata. Using Figure 4.2, determine the total foundation settlement.

Figure 4.1: Rectangular footing 10 mx 40 m

Figure 4.2: Coefficients for vertical displacement [after Bjerum et al (1956)]

