

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BSC IN CIVIL ENGINEERING

ECE 2406: FOUNDATION ENGINEERING I

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2HOURS

DATE: 13May2016

INSTRUCTIONS TO THE CANDIDATE:

- 1. You should have the following for this examination:
 - Answer booklet.
 - Mathematical Table/Pocket Calculator.
- 2. This paper consists of **FOUR** questions.
- 3. Answer question **ONE** (**Compulsory**) and any other **TWO** questions.
- 4. This paper consists of **SIX** printed pages.
- 5. Do not write on the question paper.

Question One

a) The active lateral earth pressure, at the bottom of a smooth vertical back of a retaining wall, exerted by a " $c - \phi$ "- soil, with a horizontal top surface, is given by the expression

$$p_a = \gamma z K_a - 2c \sqrt{K_a} \tag{1.1}$$

From basic principles, derive this expression.

(12 Marks)

- b) Details of a retaining wall are given in Figure 1.1.
 - (i) Plot the active lateral pressure distribution on the back of the wall.
 - (ii) Calculate the total lateral active thrust on the wall back and its position above the base.

Surcharge pressure
$$q = 20 \text{ kN/m}^2$$

 $\gamma = 16 \text{ kN/m}^3, \varphi = 30^\circ,$
Cohesion $c = 0 \text{ kN/m}^2$
 $\gamma = 21 \text{ kN/m}^3, \varphi = 25^\circ,$
Cohesion $c = 15 \text{ kN/m}^2$

(18 Marks)

Question Two

(a) For a circular-slip slope failure in a "c - ϕ " soil, the factor of safety against sliding is given by the expression

$$F = \frac{cr\theta + \Sigma N tan\varphi}{\Sigma T}$$
(2.1)

Using a neat sketch, derive the expression from the basic principles.

(8 marks)

(b) Ignoring tension cracks, investigate the stability of the embankment shown in Figure 2.1. Soil properties:

Soil layer 1: $\varphi = 30^{\circ}$, $c = 7.2 \text{ kN/m}^2$ and $\gamma = 19.3 \text{ kN/m}^3$, Soil layer 2: $\varphi = 0^{\circ}$, $c = 32.5 \text{ kN/m}^2$ and $\gamma = 19.3 \text{ kN/m}^3$.

(12 marks)

Question Three

(a) Explain the following terms used in connection with bearing capacity of soils

- (i) Ultimate bearing capacity,
- (ii) Safe bearing capacity,
- (iii) Allowable bearing capacity,

(4.5 marks)

(b) Using earth pressure theory, show that ultimate bearing capacity

$$q_{ult} = \gamma z \left(\frac{1+\sin\varphi}{1-\sin\varphi}\right)^2 + 2c \sqrt{\left(\frac{1+\sin\varphi}{1-\sin\varphi}\right)^3} + 2c \sqrt{\left(\frac{1+\sin\varphi}{1-\sin\varphi}\right)}$$
(3.1)
(10.5 marks)

(c) A strip footing is 2.5 m wide and founded at a depth of 3.0 m in a soil of unit weight 21 kN/m³, cohesion of 15 kN/m² and angle of internal friction φ of 25°. Using Terzaghi's formula and Figure 3.1, determine the ultimate bearing capacity of the foundation.

(5 marks)

Figure 3.1: Terzaghi's bearing capacity coefficients

Question Four

(a) State and explain the stages of settlement experienced by a clay soil due to foundation loading.

(6 marks)

(b) Figure 4.1 shows a section of a rigid foundation and supporting strata. Using Figure 4.2, determine the total foundation settlement.

Figure 4.1: Rectangular footing 10 m x 40 m

(14 marks)

Figure 4.2: Coefficients for vertical displacement [after Bjerum et al (1956)]