

**TECHNICAL UNIVERSITY OF MOMBASA** 

# FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES **UNIVERSITY EXAMINATION FOR:** BTAC 15 ACH 4201 : S AND P BLOCK ELEMENTS

END OF SEMESTER EXAMINATION

# SERIES: DECEMBER 2016

# TIME: 2 HOURS

DATE: Pick Date Dec 2016

#### **Instructions to Candidates**

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.** 

#### **Question ONE**

| (a) | Explain | briefly | the foll | lowing | observations; |
|-----|---------|---------|----------|--------|---------------|
|-----|---------|---------|----------|--------|---------------|

i. Be has greater tendency of forming covalent compounds unlike the rest of the members

[2marks]

[2marks]

ii. S and p block elements are poor complexing agents compared to members of transition elements.

iii. Salts of group 3 in solution are acidic, they turn blue litmus paper red

- iv. KNO<sub>3</sub> is thermally more stable than  $Ca(NO_3)_2$
- (b) Study the information in the table below and use it to answer the questions that follow.

| <u>Compound</u>   | Molecular weight | Boiling point in ( <sup>0</sup> C) |
|-------------------|------------------|------------------------------------|
| $H_2O$            | 18               | 100                                |
| $H_2S$            | 34               | -62                                |
| $H_2Se$           | 81               | -42                                |
| H <sub>2</sub> Te | 130              | -2                                 |

Explain the variation in boiling point of the hydrides of group VI elements in above table [3marks]

(c) (i) Starting with SiCl<sub>4</sub>, illustrate using equations how the structure below can be prepared [4marks]

[2marks] [2marks]



(ii) State two uses of the structure in Q(c) (i) above

[2marks]

[3marks]

- (d) Explain why down the group 3 members, the oxidation state (+1) become more stable than oxidation state (+III). [3marks]
- (e) Using examples, suggest four reasons as to why hydrogen should be treated in its own group [4marks]
- (f) Starting with Na[BH<sub>4</sub>], explain how H<sub>3</sub>BO<sub>3</sub> is prepared
- (g) Using examples state three ways in which CN<sup>-</sup> resembles; chloride, bromide and iodide ions [3marks]

# **Question TWO**

| (a) (i) Give a detailed account on how one can ascertain the presence of Al metal from its ch | ief ore  |
|-----------------------------------------------------------------------------------------------|----------|
| [bauxite] sample                                                                              | [5marks] |
| (ii) By using equations explain how Al metal can be recovered from its ore                    | [9marks] |
| (iii) State three economic importance of Al metal                                             | [3marks] |
| (b) Using examples, state 3 diagonal relationships between Al and Be                          | [3marks] |

# **Question THREE**

(a) Explain how each of the following compounds is prepared

|     | (i)                                                                                                                       | Cl <sub>2</sub> O                                                                     |          |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|--|--|--|--|--|
|     | (ii)                                                                                                                      | ClO <sub>2</sub>                                                                      | [3marks] |  |  |  |  |  |
| (b) | State o                                                                                                                   | ne use for each of the chemicals in Q3(a) above                                       | [2marks] |  |  |  |  |  |
| (c) | c) Explain why the strength of the oxoacids in group 7 decrease in the order; HClO <sub>4</sub> >HClO <sub>3</sub> > HClO |                                                                                       |          |  |  |  |  |  |
|     | HClO                                                                                                                      |                                                                                       | [3marks] |  |  |  |  |  |
| (d) | Apart f                                                                                                                   | rom cyanide ion, state 3 other examples of pseudo halides ions                        | [3marks] |  |  |  |  |  |
| (e) | Explain                                                                                                                   | n the meaning of the term 'hydrogen gap'                                              | [2marks] |  |  |  |  |  |
| (f) | Using                                                                                                                     | examples where applicable, differentiate between ionic hydrides and covalent hydrides | [7marks] |  |  |  |  |  |

# **Question FOUR**

(a) Write down stoichiometric equations for the reaction between;

| i.            | Beryllium carbide and water                                            |          |
|---------------|------------------------------------------------------------------------|----------|
| ii.           | Calcium carbide and water                                              | [2marks] |
| (b) Define    | the term 'glass'                                                       | [1mark]  |
| (c) Explai    | n why the following steps are taken in account during glass processing |          |
| i.            | Addition of metallic oxides to silicates                               | [2marks] |
| ii.           | Addition of PbO                                                        | [2maks]  |
| iii.          | Addition of B and Al                                                   | [2marks] |
| ©Technical Un | Page <b>2</b> of <b>3</b>                                              |          |

| <ul> <li>iv. Addition of NaNO<sub>3</sub> and As<sub>2</sub>O<sub>3</sub></li> <li>(d) Explain why, pentahalides of nitrogen don't exist but for the other members they exist</li> <li>(e) Using valence bond theory (V.B.T), explain why the aqueous chemistry of lithium ions is retetrahedral while for aluminium ions can go up to octahedral structure.</li> </ul> | [2marks]<br>[3marks]<br>estricted to<br>[6marks] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Question FIVE                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| (a) State and write the formula of the chief constituent of Portland cement                                                                                                                                                                                                                                                                                             | [2marks]                                         |
| (b) Based on chemical composition explain briefly how each of the following brands of cement                                                                                                                                                                                                                                                                            | are made                                         |
| i. Portland cement                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| ii. High alumina cement                                                                                                                                                                                                                                                                                                                                                 | [6marks]                                         |
| (c) State the difference between inorganic benzene and benzene                                                                                                                                                                                                                                                                                                          | [2marks]                                         |
| (d) Explain why trimethylamine is a Lewis base, but trisiylamine is not                                                                                                                                                                                                                                                                                                 | [3marks]                                         |
| (e) Explain the differences between permanent and temporary hardness of water                                                                                                                                                                                                                                                                                           | [3marks]                                         |
| (f) Explain how water hardness can be removed                                                                                                                                                                                                                                                                                                                           | [4marks]                                         |

# Appendix

| 1                         |                                 |                           |                                   |                                 | P                                    | erio                          | dic 1                      | able                             | of t                       | the E                         | Eleme                             | ents                              |                                  |                                 |                                   |                                | 18<br>2                              |
|---------------------------|---------------------------------|---------------------------|-----------------------------------|---------------------------------|--------------------------------------|-------------------------------|----------------------------|----------------------------------|----------------------------|-------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|-----------------------------------|--------------------------------|--------------------------------------|
| Hydrogen<br>1.008         | 2                               |                           |                                   |                                 |                                      |                               |                            |                                  |                            |                               |                                   | 13                                | 14                               | 15                              | 16                                | 17                             | Helum<br>4.003                       |
| Lithium<br>6.941          | 4<br>Beryllum<br>9.012          |                           |                                   |                                 |                                      |                               |                            |                                  |                            |                               |                                   | 5<br>Boron<br>10.811              | 6<br>Carbo<br>12.01              | 7<br>N<br>Nitrogen<br>1 14.007  | 8<br>O<br>Ckygen<br>15,999        | 9<br>Fluorine<br>18.998        | 10<br>Ne<br>Nean<br>20.180           |
| Na<br>Sodium<br>22.990    | 12<br>Mg<br>Magnesium<br>24.305 | 3                         | 4                                 | 5                               | 6                                    | 7                             | 8                          | 9                                | 10                         | 11                            | 12                                | 13<br>Aluminu<br>26.982           | m Silcor<br>28.08                | Phosphoru<br>30,974             | 16<br>Sulfur<br>32.056            | 17<br>Cl<br>Chlorine<br>35.453 | 18<br>Argon<br>39.948                |
| Potassium<br>39.098       | 20<br>Ca<br>Calcium<br>40.078   | 21<br>Scandium            | 22<br>Ti<br>Titaniun<br>47,867    | 23<br>Vanadi                    | 24<br>Cr<br>Chromiun<br>2 51.995     | 25<br>Mn<br>Mangane<br>54,938 | 26<br>Fe<br>iron           | 27<br>Cobat<br>58,933            | 28<br>Nickel<br>58.693     | 29<br>CL<br>Coppe             | 30<br>Zno<br>65.38                | 31<br>Gallum<br>69.723            | 32<br>Germani<br>72.63           | 33<br>Arsenic<br>74,922         | 34<br>Selenium<br>78.971          | 35<br>Br<br>Bromine<br>79.904  | 36<br>Kr<br>Krypton<br>84,798        |
| 37<br>Rb<br>Rubidium      | 38<br>Sr<br>Strontium           | 39<br><b>Y</b><br>Yttrium | 40<br>Zr<br>Zirconiu              | 41<br>Niobiu                    | 42<br>Molybdenu                      | 43<br>Tc<br>Technetiu         | 44<br>Ru<br>Buthenk        | 45<br>Rh<br>Rhodium              | 46<br>Pd<br>Palledu        | 47<br>Ag<br>Silver            | 48<br>Cd<br>Cadmium               | 49<br>In<br>Indium                | 50<br>Sn<br>Tin                  | 51<br>Sb<br>Antimony            | 52<br>Te<br>Teluium               | 53<br>Iodine                   | 54<br>Xe<br>Xenon                    |
| 55<br>Cesium              | 56<br>Ba<br>Barlum              | 57-71<br>Lanthanide       | 91.224<br>72<br>Hafniur           | 73<br>Tantak                    | 6 95.95<br>74<br>₩<br>Tungstar       | 75<br>Re<br>Rhenium           | 76<br>0smiur               | 77<br>77<br>n Iridium            | 78<br>78<br>Platinur       | 79<br>79<br>Gold              | 80<br>Hg<br>Mercury               | 81<br>Thailur                     | 82<br>Pb<br>Lead                 | 83<br>Bi<br>Bismuth             | 84<br>Polonium                    | 85<br>At<br>Astatine           | 86<br>Rn<br>Radon                    |
| 87<br>Francium<br>223.020 | 88<br>Ra<br>Padum<br>226.025    | 89-103<br>Actinides       | 104<br>Rf<br>Ruthentondi<br>[261] | 105<br>Dibnis<br>Dubnis<br>[262 | 106<br>5 Sg<br>m Seaborgiu<br>1 1269 | 107<br>Bh<br>Bohrium<br>[264] | 108<br>Hassiun<br>(269)    | 109<br>109<br>Metneriu<br>1268   | 110<br>Damstadt<br>(269)   | ium Roeniger                  | 112<br>III2<br>Coperniciu<br>1277 | II3<br>Ununtriu<br>unknow         | t Flarovik<br>n [2072            | IIS<br>Unumperatu<br>unknown    | 116<br>Lv<br>Livermorium<br>[298] | 117<br>Ununseptium<br>unknown  | II8<br>Ununctium<br>unknown          |
|                           |                                 | [                         | 57<br>La                          | 58<br>Ce                        | 59<br>Pr                             | 60<br>Nd                      | 61<br>Pm                   | 62<br>Sm                         | 63<br>Eu                   | 64<br>Gd                      | 65<br>Tb                          | 66<br>Dv                          | 67<br>Ho                         | 68<br>Er                        | ° <sup>9</sup> Tm                 | 70<br>Yb                       | Lu                                   |
|                           |                                 |                           | Lanthanum<br>138.905              | Cerium<br>140.116               | Presectymium<br>140.905              | Neodymium<br>144.243          | Promethium<br>144.913      | Samarium<br>150.36               | Europium<br>151.964        | Gadolinium<br>157.25          | Terbium<br>158.925                | Dysprosium<br>162.500             | Holmium<br>164.930               | Erbium<br>167.259               | Thulium<br>168.934                | Ytterbium<br>173.055           | Lutetium<br>174.967                  |
|                           |                                 |                           | Actinium<br>227.025               | 90<br>Th<br>Thorium<br>232,035  | 91<br>Pa<br>Protactinium<br>231.035  | 92<br>Uranium<br>238.029      | 93<br>Neptunium<br>237.048 | 94<br>Pu<br>Plutonium<br>244.064 | 95<br>Americium<br>243.061 | 96<br>Cm<br>Curium<br>247.070 | 97<br>Bk<br>Berkelium<br>247,070  | 98<br>Cf<br>Calfornium<br>251,080 | 99<br>Es<br>Einsteinium<br>12541 | 100<br>Fm<br>Fermium<br>257,095 | Md<br>/endelevium<br>255.1        | Nobelium L<br>259.101          | 03<br>Lr<br>awrencium<br>(262)       |
|                           |                                 | Alkali Metal              | Alkali                            | ne Earth                        | Transition Met                       | al Basic                      | Metal                      | Seminetal                        | Noni                       | metal                         | Halogen                           | Noble                             | Gas                              | Lanthanide                      | Actinid                           | •                              |                                      |
|                           |                                 |                           |                                   |                                 |                                      |                               |                            |                                  |                            |                               |                                   |                                   |                                  |                                 |                                   | 62010                          | Todd Heimeneline<br>sciencenolas.org |