TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF PURE \& APPLIED SCIENCES
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MEDICAL ENGINEERING
BACHELOR OF TECHNOLOGY IN MEDICAL ENGINEERING
ACH 4150 : CHEMISTRY FOR ENGINEERS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS
DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Answer question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

(a) Briefly describe the Lyman series of the emission spectrum of hydrogen, indicating the region of the electromagnetic spectrum the series occupies.
(b) State the four quantum numbers used to characterise an electron in an orbital, indicating the possible values of each.
(c) Define the following terms for a chemical reaction and indicate their relationship.
i. Activation energy
ii. A catalyst
(d) Explain how a common ion affects the solubility of AgCl in AgNO_{3}.
(e) Briefly describe with suitable examples the following terms,
i. An amphiprotic solvent,
ii. A zwitterion.
(f) i. Write reaction equations showing the hydrolysis of NaNO_{2}
ii. State whether NaNO_{2} is an acidic, neutral or basic salt.
(g) Acid rain has a pH of 2.4. Calculate the H^{+}ion concentration of the rainwater.
(h) Calculate the de Broglie wavelength for a neutron moving at $2.5 \times 10^{4} \mathrm{~ms}^{-1}$.
(Mass of a neutron $=1.675 \times 10^{-27} \mathrm{~kg}$, and $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$)

Question TWO

(a) Define the following terms,
i. Hund's rule
ii. Aufbau principle.
(b) Provide possible values of the quantum numbers that uniquely describe electrons in the following orbitals,
i. 3 s
ii. 4 p
(c) Ionisation energy usually increases from left to right across a given period. However, $\mathrm{Al}(\mathrm{Z}=13)$ has a lower $1^{\text {st }}$ Ionisation energy than $\mathrm{Mg}(\mathrm{Z}=12)$. Provide an explanation on this observation.
(4 marks)
(d) Calculate the pH of a solution of 0.25 M NaCN solution, given the value of $\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$.
(10 marks)

Question THREE

(a) Explain the effect of the addition of a small amount of an acid or a base on a $\mathrm{CH}_{3} \mathrm{COONa} / \mathrm{CH}_{3} \mathrm{COOH}$ buffer solution.
(b) Calculate the pH of a $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa} / 0.50 \mathrm{CH}_{3} \mathrm{COOH}$ buffer system, given $\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.
(c) Describe the process of softening of hard water by ion exchange, indicating how the ion exchange resin is recharged.
(d) Identify the conjugate acid-base pairs for the following equations,
i. $2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S}$
ii. $\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$

Question FOUR

(a) Define the following terms,
i. Moles
ii. Molarity.
(b) A 24.8 ml solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ neutralizes 6.50 g of NaOH
i. Write down the balanced equation for the above reaction
ii. Calculate the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. ($\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{~S}=32$)
(c) Describe the processes of nitrification and de-nitrification in the nitrogen cycle.
(d) Draw Lewis diagrams for the following molecules,
i. O_{3}
ii. CO_{2}

Question FIVE

(a) For the redox reaction
$\mathrm{ClO}_{3}{ }^{-}+\mathrm{Cl}^{-} \rightarrow \mathrm{ClO}_{2}+\mathrm{Cl}_{2}$
i. Write the oxidation and reduction half reactions
ii. Balance the reaction in basic medium, showing all the steps in balancing.
(b) Given the K_{sp} for Aluminium hydroxide is 3.0×10^{-34} at $25^{\circ} \mathrm{C}$, calculate the following.
i. Molar solubility of Aluminium hydroxide and constituent ions
ii. Solubility in grams per litre for zinc hydroxide.
$(\mathrm{H}=1, \mathrm{O}=16, \mathrm{Al}=27)$.

