

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

BACHELOR OF TECHNOLOGY IN MEDICAL ENGINEERING

ACH 4150 : CHEMISTRY FOR ENGINEERS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Answer question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Assign oxidation numbers to the underlined elements in the following compounds and ion;

	(i)	$H_3\underline{P}O_4$	(ii)	Na <u>B</u> H4	(iii)	$\underline{Pt}Cl_6^{2-}$	(3 marks)
(b)	Give	any THREE as	sumptic	ons of Bohr's	theory of	the structure of the H atom	. (3 marks)
(c)	34.5 r	nl of a KHCO ₃	solution	n neutralises	25 ml of a	a 0.25M HCl solution.	
	(i) W	rite a balanced	equation	on of the neut	ralisation	reaction	(1 mark)
	(ii) C	Calculate the co	ncentrat	tion of the KI	ICO3 solu	ution.	(3 marks)
(d)	For th	ne reaction					
	H_2O_2	+ Fe ²⁺		$Fe^{3+} + H_2Q$)		
	(i) W	rite the oxidati	on and	reduction hal	f reaction	S	(2 marks)

	(ii) Balance the reaction in acidic medium, showing all steps in balancing.	(7 marks)
(e)	(i) Briefly describe the characteristics of an amphoteric oxide.	(1 mark)
	(ii) Using appropriate reaction equations, show why Al ₂ O ₃ is an amphoteric oxide.	(4 marks)
(f)	For an electronic transition from the $n = 5$ to $n = 3$ energy levels in a hydrogen atom;	
(f)	For an electronic transition from the n = 5 to n = 3 energy levels in a hydrogen atom;(i) Calculate the energy of the emitted photon	(3 marks)
(f)	 For an electronic transition from the n = 5 to n = 3 energy levels in a hydrogen atom; (i) Calculate the energy of the emitted photon (ii) Calculate the wave number of the emitted photon 	(3 marks) (3 marks)

Question TWO

(a)	State the Pauli Exclusion principle.	(1 mark)			
(b)	State Hunds rule.	(1 mark)			
(c)	Provide unique quantum numbers for the valence electrons in the C (Z=6) atom.				
(d)	Write electron configurations for the following elements and ions,				
	(i) Be (Z=4) (ii) P^{-3} (Z=15) (iii) Cr^2 (Z=24) (iv) N (Z=7)	(4 marks)			
(e)	Explain how water can be purified by ionic exchange.	(8 marks)			
(f)	Provide TWO characteristics of the H atom as a Group I and Group II element of the Periodic table.	(2 marks)			
Questi	ion THREE				
(a)	H^{-1} and Li^+ are isoelectronic. Explain the difference in radii of the two species.	(3 marks)			

(b) (c)	The 1 st and 2 nd Ionisation energies of Na are 495.9 and 4,560 kJ mol ⁻¹ , and those of Mg are 738.1 and 1,450 kJ mol ⁻¹ , respectively. Explain the differences in the onisation energies. Two atoms have electron configurations $1s^2 2s^2$ and $1s^2 2s^2 2p^1$. The 1 st ionisation	(8 marks)
	energies of the two atoms are 801 and 899 kJ mol ⁻¹ . Match each of the ionisation energies with the respective atom. Explain the choice.	(6 marks)
(d)	Explain the low electron affinity of Nitrogen (electron affinity ≈ 0).	(3 marks)

Question FOUR

(a)	State Lé Chatelier's Principle	(1 mark)			
(b)	With initial concentrations of $[H_2]_0 = 0.86$ M, $[N_2]_0 = 0.65$ M and $[NH_3]_0 = 0.45$ M, and $K_c = 9.6$ at 375 °C, the synthesis of ammonia is given by the reaction;				
	$N_{2(g)} + 3H_{2(g)} - 2NH_{3(g)}$				
	(i) Calculate the reaction quotient Q_c , and determine the direction of the reaction.				
		(5 marks)			
	(ii) Explain the changes in the concentration of the reactants and product.	(4 marks)			
(c)	Calculate the pH of a 0.35 M solution of NH ₄ Cl _, given $K_b = 1.8 \times 10^{-5}$.	(10 marks)			

Question FIVE

(a)	Calculate the pH of a buffer solution made from 35.0 g of CH ₃ COOH and 25.6 g of CH ₃ COOH in 1.0 l of solution. Given $K_a = 1.8 \times 10^{-5}$.	COONa (6 marks)
(b)	Calculate the quantity of CaCO ₃ in grams that will dissolve in 1,000 ml of 0.10 M Ca(NC given $K_{sp} = 8.7 \times 10^{-9}$. [Atomic masses: N = 14, C = 12, O = 16, Ca = 40]) ₃) ₂ ; (8 marks)
(c)	Highlight the processes associated with nitrogen fixation.	(6 marks).