TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MEDICAL ENGINEERING BACHELOR OF TECHNOLOGY IN MEDICAL ENGINEERING ACH 4150 : CHEMISTRY FOR ENGINEERS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS
DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Answer question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

(a) Assign oxidation numbers to the underlined elements in the following compounds and ion;
(i) $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$
(ii) NaBH_{4}
(iii) $\mathrm{PtCl}_{6}{ }^{2-}$
(3 marks)
(b) Give any THREE assumptions of Bohr's theory of the structure of the H atom.
(c) $\quad 34.5 \mathrm{ml}$ of a KHCO_{3} solution neutralises 25 ml of a 0.25 M HCl solution.
(i) Write a balanced equation of the neutralisation reaction
(ii) Calculate the concentration of the KHCO_{3} solution.
(d) For the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(i) Write the oxidation and reduction half reactions
(ii) Balance the reaction in acidic medium, showing all steps in balancing.
(e) (i) Briefly describe the characteristics of an amphoteric oxide.
(ii) Using appropriate reaction equations, show why $\mathrm{Al}_{2} \mathrm{O}_{3}$ is an amphoteric oxide.
(f) For an electronic transition from the $\mathrm{n}=5$ to $\mathrm{n}=3$ energy levels in a hydrogen atom;
(i) Calculate the energy of the emitted photon
(ii) Calculate the wave number of the emitted photon

$$
\left(\mathrm{R}_{\mathrm{H}}=2.18 \times 10^{-18} \mathrm{~J} ; \mathrm{C}=2.99 \times 10^{9} \mathrm{~ms}^{-1} ; \mathrm{h}=6.63 \times 10^{-34} \mathrm{JS}\right) .
$$

Question TWO

(a) State the Pauli Exclusion principle.
(b) State Hunds rule.
(c) Provide unique quantum numbers for the valence electrons in the $\mathrm{C}(\mathrm{Z}=6)$ atom.
(d) Write electron configurations for the following elements and ions,
(i) $\mathrm{Be}(\mathrm{Z}=4)$
(ii) $\mathrm{P}^{-3}(\mathrm{Z}=15)$
(iii) $\mathrm{Cr}^{2}(\mathrm{Z}=24)$
(iv) $\mathrm{N}(\mathrm{Z}=7)$
(4 marks)
(e) Explain how water can be purified by ionic exchange.
(f) Provide TWO characteristics of the H atom as a Group I and Group II element of the Periodic table.

Question THREE

(a) $\quad \mathrm{H}^{-1}$ and Li^{+}are isoelectronic. Explain the difference in radii of the two species.
(b) The $1^{\text {st }}$ and $2^{\text {nd }}$ Ionisation energies of Na are 495.9 and $4,560 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and those of Mg are 738.1 and $1,450 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Explain the differences in the ionisation energies.
(c) Two atoms have electron configurations $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ and $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$. The $1^{\text {st }}$ ionisation energies of the two atoms are 801 and $899 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Match each of the ionisation energies with the respective atom. Explain the choice.
(d) Explain the low electron affinity of Nitrogen (electron affinity ≈ 0).

Question FOUR

(a) State Lé Chatelier's Principle
(b) With initial concentrations of $\left[\mathrm{H}_{2}\right]_{0}=0.86 \mathrm{M},\left[\mathrm{N}_{2}\right]_{0}=0.65 \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]_{0}=0.45 \mathrm{M}$, and value of $\mathrm{K}_{\mathrm{c}}=9.6$ at $375{ }^{\circ} \mathrm{C}$, the synthesis of ammonia is given by the reaction;

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \quad=2 \mathrm{NH}_{3(\mathrm{~g})}
$$

(i) Calculate the reaction quotient Q_{c}, and determine the direction of the reaction.
(ii) Explain the changes in the concentration of the reactants and product.
(c) Calculate the pH of a 0.35 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$, given $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.

Question FIVE

(a) Calculate the pH of a buffer solution made from 35.0 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and 25.6 g of $\mathrm{CH}_{3} \mathrm{COONa}$ in 1.01 of solution. Given $K_{a}=1.8 \times 10^{-5}$.
(b) Calculate the quantity of CaCO_{3} in grams that will dissolve in $1,000 \mathrm{ml}$ of $0.10 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$; given $\mathrm{K}_{\mathrm{sp}}=8.7 \times 10^{-9}$. [Atomic masses: $\mathrm{N}=14, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Ca}=40$]
(c) Highlight the processes associated with nitrogen fixation.

