

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING & CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2317: THEORY OF STRUCTURES IV

END OF SEMESTER EXAMINATION
SERIES: JULY 2017

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

-Drawing instruments.

This paper consists of five questions.

Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION 1 (COMPULSORY)

i) Figure Q.1 (a) is a bridge truss loaded at point C and D and resting freely at the two supports. Using Castagliano's 1st theorem and taking the modulus of elasticity as 230KN/mm².

Figure Q.1 (a)

(20 marks)

State Castagliano's 2nd theorem and show that the deflection of a frame using this ii) principle is given by $\left[-\lambda = \frac{\delta U}{\delta R}\right]$

(10 marks)

QUESTION 2

A braced span AB shown in figure Q.2(a) supports a vertical load of 100KN. find the i) maximum deflection in span AB and the deflection at C in terms of EI using moment area method.

(17 marks)

State Castagliano's 1st theorem and show the equation associated with it. ii)

(3 marks)

QUESTION 3

Figure Q.3 shows a continuous beam loaded with a udl along the whole span. Using conjugate beam method, determine deflection at point d using conjugate beam method.

Figure Q.3

(18 marks)

QUESTION 4

- i) State the principle of virtual work and explain how it's applied in the analysis of trusses. i. (3 marks)
- ii) Find the horizontal displacement at joint B of the frame ABCD as shown in Figure Q.4 (b) by virtual work method. Assume EI to be constant for all members.

Figure Q.4 (b)

QUESTION 5

Determine the value of reaction at support D for the beam shown in figure Q.5 using the method of least work.

(20 marks)