FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES UNIVERSITY EXAMINATION FOR:

BTRE, BTAP, BMLS, BSEH AND BSFO-16S

ACH 4109: PHYSICAL CHEMISTRY
SPECIAL /SUPPLEMENTARY EXAMINATION

SERIES:AUGUST2017
TIME:2HOURS
DATE:Pick DateSep2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Answer question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.
Use the following Data where applicable.
$0^{\circ} \mathrm{C}=273 \mathrm{~K}, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{C}=12, \mathrm{H}=1$
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08206$ or $0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Question ONE

a) State and explain three factors that determine the rate of reaction
(b) A 3.00 litre Helium gas container at $33^{\circ} \mathrm{C}$ is corked with a piston whose pressure is 4.15 atm . If the piston is slightly lifted to attain a new pressure of 665 mmHg , the temperature of the Helium gas drops to $15.0^{\circ} \mathrm{C}$.Determine the final volume of the gas
(c) Calculate:
(i) The mass of ammonia gas enclosed in a 0.5 litre flask at $30^{\circ} \mathrm{C}$ that exerts a pressure of 5 atm .
(ii) The number of molecules of carbon dioxide enclosed in a $0.1 \mathrm{M}^{3}$ flask at $25^{\circ} \mathrm{C}$ that exerts a pressure of $25000 \mathrm{NM}^{2}$
(iii) Compare the pressure exerted by 2.8 l of 0.72 moles CO at 337 K using;
(a) The ideal gas equation
(b) The Van der wall's equation

The Van der Walls constants are
$\mathrm{a}=3.5 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}{ }^{-2}$
$\mathrm{b}=0.0437 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
(10 marks)
(d) State the Le Chartelier's Principle.

Question TWO

a) What is a buffer solution?
b) Explain, using a suitable example, the working of a buffer solution.
(c) Give an expression for pH
(d) Calculate the pH of the following solutions and state whether they are acids or bases.
(i) $\left[\mathrm{H}^{+}\right]=10-6$ moles/ litre
(ii) $\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{moles} /$ litre
(iii) O .3 M HCl
(iv) 0.2 M NaOH
(v) $0.1 \mathrm{M} \mathrm{HNO}_{3}$

Question THREE

(a) Explain two reasons why real gases deviate from the ideal behavour.
(b) State Graham's law of diffusion.
(c) Oxygen gas diffuses through an aperture in 5 minutes. How long will the same amount of nitrogen gas take to diffuse through the same aperture at the same pressure and temperature?
(d) For the equilibrium:

$\mathrm{K}_{\mathrm{c}}=4.07 \times 10^{-3}$ mole litre $^{-1}$ at 1000 K . Compute K_{p} for the reaction at the same temperature.
(e) From the equation $\mathrm{PV}=\frac{1}{3} \mathrm{mNu}^{2}$ for an ideal gas show that the kinetic energy, K.e for a mole of a gas is given by $\mathrm{K} . \mathrm{e}=3 / 2 \mathrm{RT}$.

Question FOUR

(a) State Dalton's Law of partial pressures.
(b) If the pressure exerted by a mixture of CO_{2} and O_{2} is 280 mmHg . Calculate the partial pressure of $96 \mathrm{~g} \mathrm{O}_{2}$ and $112 \mathrm{~g} \mathrm{CO}_{2}$.
(c) Given the following half equations
$\begin{array}{ll}\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}_{(\mathrm{s})} & \mathrm{E}^{\mathrm{o}}=-0.76 \mathrm{~V} \\ \mathrm{Ag}^{+}+\mathrm{e}-\longrightarrow \mathrm{Ag}_{(\mathrm{s})}\end{array} \quad \begin{aligned} & \mathrm{E}^{\mathrm{o}}=0.80 \mathrm{~V}\end{aligned}$
(i) Which substance is oxidized and which is reduced in the cell during discharge? [2marks]
(ii) Which is the cathode and which is the anode
(iii) Write the overall cell reaction.
(iv) Determine the emf of the cell at $25^{\circ} \mathrm{C}$.
(v) Predict, with reasons, whether the cell reaction is spontaneous.
(vi)Determine the equilibrium constant for the cell at $25^{\circ} \mathrm{C}$.

Question FIVE

a) (i) State the first law of thermodynamics
(ii) Explain the meaning of the terms; energy, heat, open and closed system
b) (i) With an illustration explain the Hess's law of constant heat summation
(ii) Calculate the enthalpy of the reaction below at 298 K using the given data.

$$
\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}
$$

at 298 K from the following data:
(i) $\quad \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-1411.47 \mathrm{~kJ}$
(ii) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-285.56 \mathrm{Kj}$
(iii) $\quad \mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-1558.30 \mathrm{Kj}$

