TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES Department of Pure and Applied Sciences BACHELOR OF TECHNOLOGY IN MICROBIOLOGY (BTMB16S) & BACHELOR OF SCIENCE IN MOLECULAR BIOLOGY AND FORENSIC TECHNOLOGY (BSMF16S) ACH 4109: FUNDAMENTALS OF PHYSICAL CHEMISTRY (PAPER 2) SEMESTER EXAMINATION SEPT. 2017

TIME: 2 HOURS

This paper consists of FIVE questions

Answer question **ONE** (**Compulsory**) and any other **TWO** questions

Question one

a) (i) Define a base according to the Brownsted-Lowry theory.			
(ii) With reasons, state whether the following solutions are acidic or basi	ic.		
I) A solution of sodium in liquid ammonia	(1 mark)		
II) A solution of hydrogen chloride in liquid ammonia.	(1 mark)		
III) A solution of methyl benzene in water.	(1 mark)		
b) (i) State the osmotic pressure law.			
(ii) The average osmotic pressure of human blood at 37°C is 7.6 atm.			
What will be the:			
I) Total concentration of the various solutes in blood?	(2 marks)		
II) Freezing point of blood if the molarity is taken to be equal to molality?			
(kf = 1.86 K/mol.kg, R = 0.0821 L.atm./Kmol).	(3 marks)		
c) A sample of a gas occupies 300 dm^3 at 27°C and $750 \text{ Torr pressure}$. Calculate the:			

(i) Contraction in volume when the gas is cooled to -33 °C at 750 Torr pressure.

(3 marks)

(ii) Change in volume when the pressure is reduced by 150 Torr at the same temperature.

(3 marks)

d) At temperatures above its boiling point, dinitrogen tetraoxide exists in equilibrium with nitrogen dioxide as shown:

Derive an expression relating kp and kc for this reaction. (4 marks)

e) (i) State qualitatively, the pH of CH₃COONa. (1 mark)
(ii) Give a reason for the answer in (i) above. (1 mark)

(iii) Calculate the pH of 0.15 M CH₃COONa ($K_a = 1.8 \times 10^{-5}$, $K_b = 5.56 \times 10^{-10}$)

(2 marks)

(7 marks)

f) The density of an unknown gas is 1.23 gL⁻¹ at S.T.P. Calculate its molecular mass $(R = 0.082057 \text{ L.atm.} \text{K}^{-1} \text{mol}^{-1}).$ (4 marks)

Question Two

a)	Define buffer capacity.	(2 marks)
b)	Give an example of a buffer solution with:	
	(i) A pH less than 7	(1 mark)
	(ii) A pH greater than 7	(1 mark)

- c) Describe how the buffer capacity of a buffer is determined.
- d) Calculate the pH of a buffer solution containing 0.04 M Na₂HPO₄ and 0.08 M KH₂PO₄ at 25°C.

$$H_2PO_4^- + H_2O \longrightarrow HPO_4^{2-} + H_3O^+ PK_a = 7.21$$
 (4 marks)

e) Estimate the volume of 0.1 M HCl that may be added to 25 cm³ of the phosphate buffer in (d) above before it stops acting as a buffer. (5 marks)

Question Three

a)	(i) Define the term "colligative property of matter".	(2 marks)	
	(ii) List the colligative properties of matter.	(4 marks)	

- b) Differentiate between molarity and molality of a solution as used in concentration measurements. (4 marks)
- c) The addition of 0.24 g of sulphur to 100 g carbon tetrachloride lowered its freezing point by 0.28 K. Determine the molecular formula of sulphur. (S = 32). The molal freezing point depression constant is 29.8 K) (10 marks)

Question Four

- a) (i) Define the term reaction quotient as used in chemical equilibria. (2 marks)
 (ii) Explain the importance of the reaction quotient. (4 marks)
- b) K_c for the reaction given below is 69 at 500°C.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

Analysis of a 10 litre container of the equilibrium mixture at 500°C revealed the

presence of 4.0 moles of H_2 and 5.0 moles of NH_3 .

- (i) Calculate the number of moles of N_2 in the container. (4 marks)
- (ii) Calculate Kp for the reaction mixture. (3 marks)
- c) K_c for the reaction given below is 9.00 at 973K.

$$SO_2(g) + NO_2(g) \longrightarrow SO_3(g) + NO(g)$$

- If 1.00 mole of SO₃ and 1 mole of NO are injected into a 1.00 litre flask at 973K:
- (i) Predict the direction in which the reaction would proceed. (2 marks)
- (ii) Determine the concentration of all the species in the equilibrium mixture. (5 marks)

Question Five

a) State Boyle's law.

- b) State the application of Boyle's law.
- c) The table below shows the variation of pressure with volume for one mole of ammonia gas at 0° C.

Experiment	P (atm)	Volume, V, (Litres)
1	0.1300	172.10
2	0.2500	89.28
3	0.3000	74.35
4	0.5000	44.49
5	0.7500	29.55
6	1.000	22.08

(i) Plot a graph of P against $\frac{1}{v}$.

(ii) Use the graph to determine the value of the gas constant R and give its units.

(5 marks)

(12 marks)

Page 4 of 4

(2 marks)