TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR:
SCHOOL BASED PROGRAMME

BACHELOR OF SCIENCE IN CIVIL ENGINEERING
ECE 2312 : HYDRAULICS II
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2017
TIME: 2 HOURS
Pick Date Aug Pick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID

- Drawing Instruments

This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
-Question one carries 30 marks and the rest carries equal marks (15 marks)

- This paper consists of TWO printed pages

Do not write on the question paper.

Mobile phones are not allowed in the examination room.

QUESTION ONE (COMPULSORY) 30 Marks

a) Define the following terms
i. Net or effective head of a turbine
ii. Hydraulic efficiency
iii. Mechanical efficiency (6marks)
b) Describe the two basic types of turbines
(4marks)
c) A turbine is to operate under a head of 25 m at 2.00 pm the discharge is $9 \mathrm{~m}^{3} / \mathrm{s}$. if the overall efficiency is 90% determine.
i. Power generated
ii. Specific speed of the turbine
iii. Type of turbine
d) Given the following pump characteristic $\mathrm{Q}=44.16 \mathrm{~m}^{3} / \mathrm{s} \mathrm{N}=12 \mathrm{rpm} \mathrm{H}=36.58$
i. Calculate the specific speed of the pump
ii. At its rated capacity of $44.16 \mathrm{~m}^{3} / \mathrm{s}$ this pump develops 36.58 m of head when operating at 1450 rpm . Calculate
a) The head
b) Discharge
c) Power required

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

 QUESTION TWO (20 Marks)A Pelton wheel is to be designed for the following specifications

Power
Head
Speed
Overall efficiency
Jet diameter

9560 Kw
350 meters
750 rpm
85\%
not to exceed $1 / 6$ of the wheel diameter

Calculate the following
a) The wheel diameter
b) Diameter of the jet and
c) The number of jets required

Take CV=0.985; speed ratio 0.45
(20 marks)

QUESTION THREE (20 Marks)

A centrifugal pump impeller having an external and internal diameter 480 mm and 240 mm respectively is running at 100 rpm . The rate of flow through the pump is $0.0576 \mathrm{~m}^{3} / \mathrm{s}$ and velocity of flow is constant and equal to $2.4 \mathrm{~m} / \mathrm{s}$; the diameter of the suction and deliver pipes are 180 mm and 120 mm respectively. If the power required to drive the pump is 23.3 kW and the outlet vane angle is 45°. Determine.
a) Inlet vane angle
b) Overall efficiency
c) Manometric efficiency of the pump
(20 marks)

QUESTION FOUR (20 Marks)

a. Define the term cavitation
(2marks)
b. Determine the maximum permissible elevation above tail water for the setting of a Francis turbine $(s=80 \sigma c=0.40)$ to operate under a head of 16.764 m at an elevation of 1524 m with water temperature at $60^{\circ} \mathrm{F}$ (8 marks)
c. A pump with critical value of $\sigma c=0.1$ is to pump against a head of 150 m . The barometric pressure is $98 . \mathrm{KN} / \mathrm{m}^{2}$ abs and the vapor pressure is $5.2 \mathrm{KN} / \mathrm{m}^{2}$ abs. Taking the friction losses in the intake to
be 1.5 m , find the maximum allowable height of the pump relative to the water surface at intake. (10 Marks)

QUESTION FIVE (20 Marks)

a) Describe the suction pipe
b) A centrifugal pump is to discharge $0.118 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of 1450 rpm against a head of 25 m . The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller. (16 marks)

