TECHNICAL UNIVERSITY OF MOMBASA. FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING. INSTITUTIONAL BASED PROGRAMME ECE 2311: SOIL MECHANICS II JULY 2017

Question One (Compulsory)

a) Three parallel strip footings 3m wide each and 5m apart centre to centre transmit pressures of 200, 150 and 100kN/m² respectively. Calculate the vertical stress due to the combined loads beneath the centers of each footing at a depth of 4m below the base. Assume the footings are placed at a depth of 2m below the ground surface. (9 marks)

(30marks)

- b) A concentrated load of 200kN acts at foundation level at a depth of 2m below ground surface. Compute the vertical stress along the axis of the load at a depth of 10m and at a radial distance of 5m at the same depth by (i) Boussinesq's and (ii) Westergaard's formulae for μ = 0. Neglect the depth of the foundation. (8marks)
- c) Using illustrations, discuss the various causes of failure of slopes. (10marks)
 d) Define shear strength of soil. (3marks)

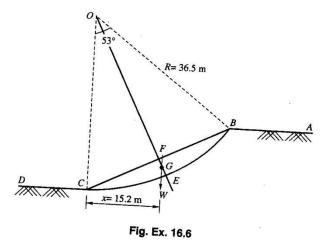
Question Two (20marks)

a) An unconfined cylindrical specimen of clay fails under an axial stress of 240kN/m². The failure plane is inclined at an angle of 55^o to the horizontal. Determine the shear strength parameters of the soil. (6marks)

b) Determine by Cullman's method the critical height of an embankment having a slope angle of 40° and the constructed soil having C' = 650kN/m², Ø = 20° and effective unit weight = 120kN/m³. Find the allowable height of the embankment if $F_c = FØ = 1.25$ (6marks)

c) The footings of sizes 4m x 4m and 3m x 3m are placed 9m centre to centre apart at the same level and carry loads of 250kg and 220kg respectively. Compute the vertical pressure at a depth of 5m at point C midway between the centers of the footings. (8marks)

Question Three (20marks)


- a) Describe the assumptions used in Boussinesq's formula for point loads. (4marks).
- b) Briefly describe the Direct Shear test for determining shear strength parameters of a soil.

c) Explain soil stabilization.

Question Four

(20marks)

a) Calculate the factor of safety against shear failure along the slip circle shown in the fig. below.
 Assume cohesion = 35kN/m², angle of internal friction = zero and total unit weight of the soil = 20kN/m³.

- b) With the aid of sketches, discuss the different types of circular surfaces failure. (10marks)
- c) Describe the FOUR most important factors upon which c and σ , in Coulomb's equation depend

(5marks)

(12 marks)

(4marks)

Question Five

(20marks)

a) Briefly describe the various types of admixtures used in soil stabilization. (8 marks)

b) Compute the factor of safety of a slope of infinite extent having a slope angle of 25°. The slope is made of cohesion less soil with $\phi' = 30^{\circ}$. (2marks)

c) Analyze the same slope if it is made of clay having C' = 30kN/m², Ø' = 20° , e = 0.65 and G = 2.7 under the following conditions:

- i) When soil is dry
- ii) When water seeps parallel to the surface of slope
- iii) When slope is submerged

(10 marks)