THE TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE
CIVIL ENGINEERING
ECE 2307 THEORY OF STRUCTURES III
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions

Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of TWO printed pages
SECTION A (COMPULSORY -30 MARKS) QUESTION 1
(a)Derive Clapeyron's Three Moment Equation
(b)A continuous beamABCD, simply supported at A, B, C and D, is loaded as shown below.

Using three moment theorem find the moments over the beam and draw bending moment and shear force diagrams.

SECTION B (Answer any TWO questions from this section.Each question carries 20 marks) QUESTION 2

Compute the ordinates at intervals of L/4 of the influence line for RA for the two span continuous beam shown below for which EI is constant.
(20marks)

QUESTION 3

Determine the support moments of the continuous beam shown below.The support at A rotates through 0.15 radian in a clockwise direction and the support at C settles down $10 \mathrm{~mm} ; \mathrm{E}=2.1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=4 \mathrm{X} 10^{4} \mathrm{~mm}^{4}$. Use slope deflection method.
$\mathrm{EI}=8400 \mathrm{kN} / \mathrm{m}^{2}$

QUESTION 4

Using slope deflection method determine the support moments for the beam shown and plot the bending moment diagram.
(20marks)

QUESTION 5

A continuous beam ABCDE , with uniform flexural rigidity through out has roller supports at B, C and D, a built-in support E and an overhang AB as shown below.

It carries a uniformly distributed load of intensity of $2 \mathrm{kN} / \mathrm{M}$ on AB and another of intensity of $3 \mathrm{kN} / \mathrm{m}$ over BCDE .In addition to it , a point load of 8 kN is placed midway between C and D .The span lengths are $\mathrm{AB}=2 \mathrm{~m}, \mathrm{BC}=\mathrm{CD}=\mathrm{DE}=5 \mathrm{~m}$. Obtain the support moments by the moment distribution method and sketch the B.M. diagram giving values at salient points.

