TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2306: ENGINEERING SURVEY III

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS
DATE:

Instructions to Candidates
You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.
This paper consists of five questions.
Attempt any THREE questions.
Do not write on the question paper.

Question ONE (Compulsory)

a) A cutting is to be made in the ground which has a traverse slope of $1: 5$. The width of the formation was 10 m and the side slope are 1 vertical to 2 horizontal. If the depths of the center lines of the three sections of 25 m apart were $4.5,6.10$ and 8.30 m respectively. Determine the volume of the earth over this length
(14 Marks).
b). Tabulate the data required to set out a simple circular curve using a chain and a tape. The radius of the curve is given as $\mathbf{8 0 0} \mathbf{~ m}$ connecting two straights deflecting at an angle of $\mathbf{1 8}^{\mathbf{0}} \mathbf{2 4}$, and the chainage of the intersection I is $\mathbf{2 2 4 0} \mathrm{m}$ (use standard chord of 20 m)
(12 Marks).
c). Determine the area of a plot given the offsets scaled from a plan at an interval of 20 m . The information was provided as follows:

Offset (m):	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}
Length (m):	16.78	19.81	20.44	19.23	16.76	18.68	17.68	17.37	16.76	18.68

(4 Marks).

Question TWO

a). Define the following terms as used in Mass Haul Diagrams:
i). Mass Haul Diagram
(2 Marks).
ii). Haul distance
(2 Marks).
iii). Overhaul distance
(2 Marks).
iv). Shrinkage
(2 Marks).
v). Haul
(2 Marks).
b). The coordinates of a polygon $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E were recorded as follows:

Station	$\mathbf{E}(\mathbf{m})$	$\mathbf{N}(\mathbf{m})$
A	200.00	300.00
B	206.98	285.65
C	368.93	282.02
D	395.93	248.80
E	200.94	185.70

If the steel tape used during the measurements was found to be 0.1 m too long, determine the corrected area of the plot to the nearest hectares
(10 Marks).

Question THREE

a). A road has a formation breadth of 8 m and the side slopes of 1 in cut, and 1 in 3 fill. The original ground has a cross - fall of 1 in 5 . If the depth of excavation of two sections 30 m apart are 0.8 and 1.2 m respectively, calculate the volumes of both the cut and the fill over this length (7 Marks).
b). Using a sketch derive the elements of a simple circular curve

Question FOUR

a). Using a sketch derive the formula for the widths $\mathbf{W}_{\mathbf{1}}$ and $\mathbf{W}_{\mathbf{2}}$ of a section with a cross-fall
(10 Marks).
b). Tabulate the data required to set out a simple circular curve using a chain and a tape. The radius of the curve is given as $\mathbf{6 0 0} \mathbf{m}$ connecting two straights deflecting at an angle of $\mathbf{1 8}^{\mathbf{2}} \mathbf{2 4}$ ' and the chainage of the intersection \mathbf{I} is $\mathbf{2 1 4 0} \mathrm{m}$ (use standard chord of 20 m)
(10 Marks).

Question FIVE

a) In order to find the excavation required for a railway cutting cross - section were taken at every 20 m . As the ground surface was irregular, the cross -sections were plotted and their areas obtained using a planimeter. The results were tabulated as follows:

| Chainage (m): | 1840 | 1860 | 1880 | 1900 | 1920 | 1940 | 1980 | 2000 | 2020 | 2040 |
| :--- | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Area $\left(\mathrm{m}^{2}\right):$ | 34 | 296 | 348 | 201 | 297 | 396 | 462 | 189 | 243 | 149 |

(10 Marks).
b). Using appropriate formulas describe any FOUR methods of determining areas of irregular figures
(10 Marks).

