FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR: BSC IN CIVIL ENGINEERING
 ECE 2305: PUBLIC HEALTH ENGINEERING I END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS
 DATE:18May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, Drawing Instruments, Scientific calculator, examination pass and student ID This paper consists of five questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

ANSWER THREE QUESTIONS. QUESTION ONE IS COMPULSORY.

QUESTION 1:

a) Define the following terms as used in water supply engineering:

1) Water demand projection
2) Average water demand
3) Variation in water demand
4) Water consumption per capita
(8 Marks)
b) What are the main water uses considered during water demand projection for public water supplies? (3 Marks)
c) State five waterborne diseases and the pathogenic bacteria/microorganism causing each of the diseases mentioned. (5 Marks)
d) What is the function(s) of the following units in a water treatment plant:
i. Screens
ii. Sedimentation tank
iii. Filters

(6 Marks)

e) Differentiate between plain and chemical assisted sedimentation as applied in water treatment. (2 Marks)
f) A tourist town in Kenya is experiencing chronic water shortages which have affected most businesses including hotels. One of the high class hotels is contemplating putting up its own water supply. If the hotel has a bed capacity of 600 beds, calculate its water demand. Use the table provided for water consumption rates. (6 Marks)

QUESTION 2:

a. Filtration is a very important process in water treatment. Describe the main components a typical filter unit. (6 Marks).
b. Define the terms "effective size" and "uniformity coefficient" of a filter media. (4 Marks)
c. A rural community in Kenya has no piped water. The government is planning to supply water to this community. Its population was 10,000 people in the 2009 population census. The population of the community is projected to grow at a constant rate of 2.5% from 2009 to 2050. If the "initial" year is 2018, calculate the water demand of the community in the initial, future and ultimate years respectively. Assume uniform water consumption per capita of $30 \mathrm{l} / \mathrm{h} / \mathrm{d}$.
The local water engineer has recommended slow sand filters to be used in the treatment of water. Calculate the surface area of the filters required to treat the ultimate requirements for the community. Assume a filtration rate of $0.15 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}^{2}$.
(10 Marks)

QUESTION 3:

a) Explain the following terms using neat sketches where applicable.
i. Water hardness
ii. Break-point chlorination
iii. dechlorination
(6 Marks)
b) Differentiate between temporary and permanent water hardness. (2 Marks)
c) During design of a water supply system, a gravity system is preferred over a pumping system. Explain why this preference. (4 Marks)
d) A waterworks is intended to serve a city with a population of 400,000 people. The average water consumption per capita is $100 \mathrm{l} / \mathrm{h} / \mathrm{d}$. Aluminium sulphate (Alum) has been recommended for use as a coagulant. Jar test conducted in the laboratory shows optimum dose of $5 \mathrm{mg} / \mathrm{l}$. calculate the quantity of Alum required per day in kilograms. (8 Marks)

QUESTION 4:

a. Discuss the disadvantages of conveying water in open channels for public water supply. (4 marks)
b. Water pipes are made of various materials such as steel, plastic, concrete and others. Treated water is almost exclusively conveyed through pipelines laid underground. What are the factors which are considered in choosing the appropriate pipe material? (4 marks)
c. When laying of a new water pipeline is completed, it is mandatory to its soundness. This is to ensure that it has been properly laid according to the specifications and that it can withstand the expected water pressures. Outline the procedure of testing a new water pipeline. (6 marks)
d. Water is to be supplied to a town with a population of 100,000 . The waterworks is situated at a lower level than the water intake with a level difference of 60 metres. Determine the size of the gravity main of length 20 km if the per capita water consumption is $1201 / \mathrm{h} / \mathrm{d}$. Take friction factor in the pipe to be 0.075 and the system operates for 12 hours in a day. (6 Marks)

Consumption Rates							
CONSUMER	UNIT	RURAL AREAS			URBAN AREAS		
		High potential	Medium potential	Low potential	$\begin{gathered} \text { High } \\ \text { Class } \\ \text { Housing } \end{gathered}$	Medium Class Housing	$\begin{gathered} \text { Low } \\ \text { Class } \\ \text { Housing } \end{gathered}$
People with individual connections	1/head/ day	60	50	40	250	150	75
People without connections	1/head/ day	20	15	10	-	-	20
Livestock unit	1/head/ day	50			-		
Boarding schools	1/head/ day	50					
Day schools with WC without WC	1/head/ day	255					
Hospitals Regional District other	1/bed/ day	$\left.\begin{array}{l} 400 \\ 200 \\ 100 \end{array}\right\}$			+201 per outpatient and day (minimum 5000 1/day)		
Dispensary and Health Centre	1/day	5000					
Hotels High Class Medium Class Low Class	1/bed/ day	$\begin{gathered} 600 \\ 300 \\ 50 \\ \hline \end{gathered}$					
Administrative offices	$\begin{aligned} & \hline \begin{array}{l} \text { l/head/ } \\ \text { day } \end{array} \\ & \hline \end{aligned}$	25					
Bars	1/day	500					
Shops	1/day	100					
Unspecified industry	1/ha/day	20,000					
Coffee pulping factories	1/kg coffee	25 (when re-circulation of water is used).					

