TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING
 (INSTITUTION BASED EXAMINATION)
 ECE 2304:HYDRAULICS
 END OF SEMESTER EXAMINATION

SERIES: MARCH 2017

TIME: 2 HOURS
DATE: 26 Mar 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions.
Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) Define an open channel. (3 Marks)
b) A rectangular channel is 1.5 m deep and 6 m wide. Find the discharge through the channel when it runs full. $\mathrm{S}_{\mathrm{o}}=1$ in 900 and $\mathrm{C}=50$. (8 Marks)
c) Water is flowing at the rate of $16.5 \mathrm{~m}^{3} / \mathrm{s}$ in an earthen trapezoidal channel width 9 m , water depth 1.2 m and side slope $1: 2$. Calculate the bed slope. $\mathrm{C}=49.5$. (8 Marks)
d) An earthen channel with a 3 m wide base and side slopes 1:1 carries water with a depth of 1 m . The bed slope is 1 in 1600 . Estimate the discharge. $\mathrm{N}=0.04$. (11 Marks)

Attempt any TWO questions

QUESTION TWO
a) Define the following terms:
i) Normal depth
ii) Turbulent flow
iii) Specific gravity
iv) Laminar flow
v) Critical depth (5 Marks)
b) Calculate the most economical cross-section of a rectangular channel to carry $0.3 \mathrm{~m}^{3} / \mathrm{s}$ when bed slope is 1 in 1000, assume Chezy's $\mathrm{C}=60$. (7 Marks)
c) A trapezoidal channel having side slopes of $1: 1$ and bed slope of 1 in 1200 is required to carry a discharge of $180 \mathrm{~m}^{3} / \mathrm{min}$. find the dimensions of the channel for minimum cross section. $C=50$. (8 Marks)

Attempt any TWO questions

QUESTION TWO
Describe the method of solving problems of non-uniform flow. (20 Marks)
QUESTION THREE
a) A rectangular section channel conveys $2.5 \mathrm{~m}^{3} / \mathrm{s}$ flow with a bed slope of 0.0002 . determine the best hydraulic section dimensions if:
i) The effective surface roughness height is 3 mm
ii) The manning roughness coefficient is 0.014
(10 Marks)

QUESTION FOUR

a) A rectangular channel section of width 1 m carries a flow of $0.3 \mathrm{~m}^{3} / \mathrm{s}$
i) Assuming Chezy coefficient of 55 and slope of 0.002 , estimate the depth of uniform flow.
ii) Assuming the efficient surface roughness height of 3.17 mm and slope of 0.002 , estimate the depth of uniform flow. (5 Marks)

QUESTION FIVE

a) Outline the procedures for model analysis. (3 Marks)
b) The discharge over a model which is reduced to $1: 100 \mathrm{in}$ all its dimensions is $1.51 / \mathrm{s}$. What is the corresponding discharge in the prototype? (5 Marks)
c) Show that the resistance (R) to the motion of a sphere of diameter (D) moving with a uniform velocity (V) through a real fluid having mass density (ρ) and viscosity (μ) is given by

$$
\mathrm{R}=\rho V^{2} D^{2} f\left(\frac{\mu}{\rho V D}\right)
$$

SGSISO 9001:2008 Certified

