

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BSC IN CIVIL ENGINEERING

ECE 2214 : STRENGTH OF MATERIALS II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: 18 May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID -Drawing instruments. This paper consists of five questions. Attempt question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) A rectangular masonry pier of sectional size 4.5m x 3.0m is subjected to a direct load of 450KN placed at an eccentricity of 250mm from both axes.

i) Determine the stress intensities at the four corners of the pier section (16 marks)

ii) Calculate the maximum and minimum stresses in the pier section if an additional load of 135KN is

placed at the centroidal axis of the pier

b) A flitched timber beam made up of steel has a section as shown below. Determine the moment of Resistance (MR) of beam. Assume: $fs = 10 KN/cm^2$

 $fs = 0.5 \text{ KN/cm}^2$ (10 marks)

(4 marks)

QUESTION TWO

a) State the assumptions in the Euler's column theory

b) Derive the formula for the Euler critical load for a long column with one end built-in and the other pinned. (8 marks)

c) A T-section 150mm x 140mm x20mm thick is used as a strut of length 4.0m hinged at its ends. Determine the Euler buckling load if young's modulus for the material is 200KN per m².

QUESTION THREE

a) Define a composite section and explain briefly the circumstances that necessitate its use giving **TWO** examples. (6 marks)

b) Derive: Total Moment of Resistance (MR) equation:

$$\mathbf{M} = (m\mathbf{I}_2 + \mathbf{I}_1)\frac{ft}{y} \tag{11 marks}$$

c) A solid shaft of 150mm diameter is used to transmit torque. Find the maximum torque transmitted by the shaft if the maximum shear stress induced to the shaft is 45N/mm². (3 marks)

QUESTION FOUR

©Technical University of Mombasa

(3 marks)

(9 marks)

a) State the assumptions for finding out shear stresses in a circular shaft subjected to torsion

(3 marks)

b) Derive the equation for determining torsional stresses and strains induced in a circular shaft

c) Describe the FOUR main theories of elastic failure (10 marks)

QUESTION FIVE

a) State the assumptions on which Rankine's theory for active earth pressure is based

(2 marks)

b) A masonry retaining wall of trapezoidal cross section with a vertical face on the earth side is 1.0m wide at the top, 3.0m wide at the bottom and 6.0m high. It retains non-cohesive soil over its entire height. The densities of the retained soil and masonry wall are 16KN/m³ and 24KN/m³ respectively.

The soil backfill has an angle of repose of 30° and the coefficient of friction at the base of wall is 0.6. Determine the stability of the retaining wall against:

i) Tension at the base	
ii) Overturning	
iii) Sliding	(12 marks)
iv) Calculate the extreme stresses induced in the base of wall	(6 marks)